/
OUTLINE EXECUTIVE SUMMARY  Contact Resonance Imaging using Atomic Force Microscopy We OUTLINE EXECUTIVE SUMMARY  Contact Resonance Imaging using Atomic Force Microscopy We

OUTLINE EXECUTIVE SUMMARY Contact Resonance Imaging using Atomic Force Microscopy We - PDF document

test
test . @test
Follow
516 views
Uploaded On 2014-12-20

OUTLINE EXECUTIVE SUMMARY Contact Resonance Imaging using Atomic Force Microscopy We - PPT Presentation

Atomic Force Acoustic Microscopy AFAM and Ultrasonic Atomic Force Microscopy UAFM Both these techniques are combination of atomic force microscopy AFM and acoustic waves We have used commercial piezoelectric PZT PbZrTiO ceramic to elucidate the capa ID: 27043

Atomic Force Acoustic Microscopy

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "OUTLINE EXECUTIVE SUMMARY Contact Reson..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ContactResonanceImagingusingAtomicForceMicroscopyWehaveshownthatonecandeterminelocalelasticpropertiesofsurfacesusingcontactresonanceimagingie.,AtomicForceAcousticMicroscopy(AFAM)andUltrasonicAtomicForceMicroscopy(UAFM).Boththesetechniquesarecombinationofatomicforcemicroscopy(AFM)andacousticwaves.WehaveusedcommercialpiezoelectricPZT,Pb(Zr,Ti)Oceramic,toelucidatethecapabilityofthethesetechniquestoimagethedistributionoflocalstiffnessoverthesamplesurface.Wehaveshownboththetechniquesgivesimilarresults.But,UAFMhasanadvantageoverAFAMbecauseitdoesnotrequirethesampletobebondedtoanultrasonictransducer.IntheUAFMtechniquethecantileveritselfcanbeexcitedbyapermanentlyattachedultrasonictransducer.WehaveshownforthefirsttimethatUAFMgivessimilarcontrastinversionimagesliketheAFAMimages.InbothAFAMandUAFMtechniquethetipoftheAFMcantileverisincontactwiththesampleandtheneitherthesampleisexcitedusingaultrasonictransducerbondedunderneaththesample(AFAM)asshowninFig.1(a)orthecantileverisexcitedusinganultrasonictransducerattachedtothecantilever(UAFM).Inboththecaseseithertheamplitudeorfrequencyofcantilevervibrationismonitored.Dependingonwhethertheeffectiveelasticconstantbetweenthetipandthesamplesurfaceishigher(stiff)orlower(soft)thepeakoftheresonancecurvewillshifttowardsahigherorlowerfrequency,respectivelyasshowninFig.1(b)andFig.1(c).Thefixedendofthecantileverwillhaveonenodeofthevibrationatafixedposition(substrateend)andthepositionoftheothernodewilldependonthelocalrigidityofthesamplesurface(forthesofterregionthenodewillbedeeperintothesample,whereasfortheharderregionthenodewillbeclosetothesamplesurfaceasshownschematicallyinFigure1(b)).Thuswhenthetipisincontactwiththesofterregion,thewavelengthofthecantilevervibrationwillincrease(),resultinginadecreaseofthecantilever'svibrationalfrequency(f).Also,forthesofterregionthenodeatthesampleaccompaniedbyareductionoftheamplitudeattheresonance.Thus,asthetipmovestowardsthesofterregion,thefrequencyofvibrationdecreasesorincreasesifthetipmovestowardstheharderregion.Iftheexcitationfrequencyofthetransducer,whichisalsousedasthereferencefrequencyofthelock-inamplifier,issetslightlyabovethepeakvalueasshowninFig.1(c),andifthetipincontactwiththesurfacemovestoahigherelasticconstantregionthentheamplitudeofoscillationofthecantileverwillincrease(markedbyarrow1)andifthetipmovestoalowerelasticconstantregion,thentheamplitudeofoscillationofthecantileverwilldecrease(markedbyarrow2).Thusanincreaseintheamplitudeofoscillationofthecantilevercorrespondstoahigherelasticconstantregionandadecreaseintheamplitudeofoscillationcorrespondstoalowerelasticconstantregion.Ifwenowchoosethetransducerexcitationfrequencyandthereferencefrequencyforthelock-inamplifierbelowtheresonancepeakthenthesituationshouldbereversed.Thatis,theamplitudeofvibrationwilldecrease/increaseinregionswithhigher/lowerelasticconstantcomparedwiththereferencepoint.Thisismarkedbyarrow3andarrow4,respectively,inFig.1(c).Theimagestakenatfrequencyaboveandbelowtheresonancepeakwillhavecontrastinversionoftheimages.Wehaveseenthatthisinfactisobservedandfromthiswecanknowthedistributionoflocalelasticityatnano-scaleoverthesurfaceofthesample.endisnotverysharplydefinedascomparedwiththeharderregion,resultinginabroadeningofthepeak(increaseinfullwidthathalfmaximum(FWHM)correspondingtoFig.1:(a)SchematicdiagramoftheexperimentalsetupofAFAMandUAFM.(b)Schematicrepresentationofcantilevervibrationwhentipisincontactwithahardsurface(thenodesarewelldefinedatboththeendsofthecantilever)andasoftsurface(c)Schematicrepresentationoftheresonancecurveandtheshiftoftheresonancecurveforhigherandlowereffectiveelasticconstantregionsmarkedassoftandstiff -inamplifierSignalGenerator ACHIEVEMENT Fig.2:AFAMimageshowingin(a)stiff(bright)andsoft(dark)striperegionsandin(b)thestiff(dark)andsoft(bright)striperegions.(c)and(d)showstheschematicrepresentationofthePZTunitFig.3:AFAMandUFMimagesofpolishedbulksinteredpolycrystallinePZTsample.(a)and(b)aretheAFAMimagesobtainedwithoperatingfrequencyabove(1387kHz)andbelow(1370kHz)theresonancepeakrespectivelyand(c)and(d)aretheUFMimagesobtainedwithoperatingfrequencyabove(1392kHz)andbelow(1362kHz)theresonancepeak,respectivelyInFig.2(a)and2(b)theimagesobtainedonPZTsampleusingAFAMwithoperatingfrequencyaboveandbelowthecontactresonancepeakvaluerespectivelyareshown.WealsoshowschematicallyinFigures2(c)and2(d)thatdependingontheorientationoftheaxisoftheunitcellwithrespecttotheprobingtip,thesoftandthehardaxescanbeimaged.Sincethepolarizeddomainsareorientedindifferentaxesanddirections,theelasticconstantalongthataxisanddirectionarealsodifferentandhenceweseeadistributionofferroelectricdomainsonthesamplesurface.Wehaveshownthatusingcontactresonancetechniquei.e.,bothAFAMandUAFMtechniquesonecanimagethelocalelasticpropertiesofthesampleatnanoscaleorder.Wehavealsoexplainedthecontrastinversionoftheimageusingasimpleargumentbasedontheresonancecurve,wheretheamplitudeofcantileveroscillationchangesdependingonthe1.S.Banerjee,N.Gayathri,S.Dash,A.K.Tyagi,andBaldevRaj;,(2005)211913.2.S.Banerjee,N.Gayathri,S.R.Shannigrahi,S.Dash,A.K.TyagiandBaldevRaj;(2007)Appl.Phy.LettJ.Phys.D:Appl.Phys.,Furtherinquiries:Dr.S.BanerjeeandDr.A.K.Tyagi,MaterialsScienceDivisionMetallurgyandMaterialsGroup,IGCAR,e-mail:akt@igcar.gov.inTocomparetheAFAMandUAFMtechnique,inFigs.3(a)and3(b)weshowtheAFAMimagesandinFigs.3(c)and3(d)weshowtheUFMimagesobtainedforthePZTsample.Figs.3(a)and3(c)showstheimageswhentheoperatingfrequencywasabovethecontactresonancepeakfrequencyandFigs.3(b)and3(d)showtheimageswhentheoperatingfrequencywasbelowthecontactresonancepeakfrequency.WeobserveclearlybrightanddarkregionsontheAFAMandtheUAFMimagesandalsocontrastinversionwhentheoperatingfrequencyischanged.WehaveshownthatUAFMwhichdoesnotrequireaseparateultrasonictransducerforsampleexcitationalsogivesthesameinformationandcanbeusedtoimagethelocalstiffnessofthesample Wehaveexplainedthecontrastinversionoftheimageusingasimpleargumentbasedontheresonancecurve,wheretheamplitudeofcantileveroscillationchangesdependingonthelocalstiffnessofthematerialdescribedschematicallyinFig.1(b)andFig.1(c). ADDITIONALINFORMATIONABOUTAFAMGENERALEXPLANATION:COMPARISONOFAFAMANDUFAMBRIEFDESCRIPTIONOFTHEORETICALBACKGROUNDPUBLICATIONSARISINGOUTOFTHISSTUDYANDRELATEDWORK