/
THE GAUSSIAN INTEGRAL KEITH CONRAD Let x J x and x x THE GAUSSIAN INTEGRAL KEITH CONRAD Let x J x and x x

THE GAUSSIAN INTEGRAL KEITH CONRAD Let x J x and x x - PDF document

test
test . @test
Follow
633 views
Uploaded On 2015-01-18

THE GAUSSIAN INTEGRAL KEITH CONRAD Let x J x and x x - PPT Presentation

These numbers are positive and I 2 2 and I Theorem With notation as above or equivalently 960 or equivalently 1 We will give multiple proofs of this result Other lists of proofs are in 3 and 8 The theorem is subtle because there is no simple anti ID: 32966

These numbers are positive

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "THE GAUSSIAN INTEGRAL KEITH CONRAD Let x..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

THEGAUSSIANINTEGRALKEITHCONRADLetI=Z1�1e�1 2x2dx;J=Z10e�x2dx;andK=Z1�1e�x2dx:Thesenumbersarepositive,andJ=I=(2p 2)andK=I=p 2.Theorem.Withnotationasabove,I=p 2,orequivalentlyJ=p =2,orequivalentlyK=1.Wewillgivemultipleproofsofthisresult.(Otherlistsofproofsarein[4]and[9].)Thetheoremissubtlebecausethereisnosimpleantiderivativefore�1 2x2(ore�x2ore�x2).Forcomparison,Z10xe�1 2x2dxcanbecomputedusingtheantiderivative�e�1 2x2:thisintegralis1.1.FirstProof:PolarcoordinatesThemostwidelyknownproof,duetoPoisson[9,p.3],expressesJ2asadoubleintegralandthenusespolarcoordinates:J2=Z10e�x2dxZ10e�y2dy=Z10Z10e�(x2+y2)dxdy:Thisisadoubleintegraloverthe rstquadrant,whichwewillcomputebyusingpolarcoordinates.The rstquadrantisf(r;):r0and0=2g.Writingx2+y2asr2anddxdyasrdrd,J2=Z=20Z10e�r2rdrd=Z10re�r2drZ=20d=�1 2e�r2 10 2=1 2 2= 4:Takingsquareroots,J=p =2.By[1],thisnicemethoddoesn'tapplytoanyotherintegral.2.SecondProof:AnotherchangeofvariablesOurnextproofusesanotherchangeofvariablestocomputeJ2,butthiswillonlyrelyonsingle-variablecalculus.Asbefore,wehaveJ2=Z10Z10e�(x2+y2)dxdy=Z10Z10e�(x2+y2)dxdy;1 2KEITHCONRADbutinsteadofusingpolarcoordinateswemakeachangeofvariablesx=ytontheinsideintegral,withdx=ydt,soJ2=Z10Z10e�y2(t2+1)ydtdy=Z10Z10ye�y2(t2+1)dydt:SinceZ10ye�ay2dy=1 2afora�0,wehaveJ2=Z10dt 2(t2+1)=1 2 2= 4;soJ=p =2.ThisapproachisduetoLaplace[7,pp.94{96]andhistoricallyprecedesthemorefamiliartechniqueinthe rstproofabove.WewillseeintheeighthproofthatthiswasnotLaplace's rstmethod.3.ThirdProof:DifferentiatingundertheintegralsignFort�0,setA(t)=Zt0e�x2dx2:TheintegralwewanttocalculateisA(1)=J2andthentakeasquareroot.Di erentiatingA(t)withrespecttotandusingtheFundamentalTheoremofCalculus,A0(t)=2Zt0e�x2dxe�t2=2e�t2Zt0e�x2dx:Letx=ty,soA0(t)=2e�t2Z10te�t2y2dy=Z102te�(1+y2)t2dy:Thefunctionundertheintegralsigniseasilyantidi erentiatedwithrespecttot:A0(t)=Z10�@ @te�(1+y2)t2 1+y2dy=�d dtZ10e�(1+y2)t2 1+y2dy:LettingB(t)=Z10e�t2(1+x2) 1+x2dx;wehaveA0(t)=�B0(t)forallt�0,sothereisaconstantCsuchthat(3.1)A(t)=�B(t)+Cforallt�0.To ndC,welett!0+in(3.1).TheleftsidetendstoZ00e�x2dx2=0whiletherightsidetendsto�Z10dx=(1+x2)+C=�=4+C.ThusC==4,so(3.1)becomesZt0e�x2dx2= 4�Z10e�t2(1+x2) 1+x2dx:Lettingt!1inthisequation,weobtainJ2==4,soJ=p =2.Acomparisonofthisproofwiththe rstproofisin[20]. THEGAUSSIANINTEGRAL34.FourthProof:AnotherdifferentiationundertheintegralsignHereisasecondapproachto ndingJbydi erentiationundertheintegralsign.IheardaboutitfromMichaelRozman[14],whomodi edanideaonmath.stackexchange[22],andinaslightlylesselegantformitappearedmuchearlierin[18].Fort2R,setF(t)=Z10e�t2(1+x2) 1+x2dx:ThenF(0)=R10dx=(1+x2)==2andF(1)=0.Di erentiatingundertheintegralsign,F0(t)=Z10�2te�t2(1+x2)dx=�2te�t2Z10e�(tx)2dx:Makethesubstitutiony=tx,withdy=tdx,soF0(t)=�2e�t2Z10e�y2dy=�2Je�t2:Forb�0,integratebothsidesfrom0tobandusetheFundamentalTheoremofCalculus:Zb0F0(t)dt=�2JZb0e�t2dt=)F(b)�F(0)=�2JZb0e�t2dt:Lettingb!1inthelastequation,0� 2=�2J2=)J2= 4=)J=p  2:5.FifthProof:AvolumeintegralOurnextproofisduetoT.P.Jameson[5]anditwasrediscoveredbyA.L.Delgado[3].Revolvethecurvez=e�1 2x2inthexz-planearoundthez-axistoproducethe\bellsurface"z=e�1 2(x2+y2).Seebelow,wherethez-axisisverticalandpassesthroughthetoppoint,thex-axisliesjustunderthesurfacethroughthepoint0infront,andthey-axisliesjustunderthesurfacethroughthepoint0ontheleft.WewillcomputethevolumeVbelowthesurfaceandabovethexy-planeintwoways.FirstwecomputeVbyhorizontalslices,whicharediscs:V=Z10A(z)dzwhereA(z)istheareaofthediscformedbyslicingthesurfaceatheightz.Writingtheradiusofthediscatheightzasr(z),A(z)=r(z)2.Tocomputer(z),thesurfacecutsthexz-planeatapairofpoints(x;e�1 2x2)wheretheheightisz,soe�1 2x2=z.Thusx2=�2lnz.Sincexisthedistanceofthesepointsfromthez-axis,r(z)2=x2=�2lnz,soA(z)=r(z)2=�2lnz.ThereforeV=Z10�2lnzdz=�2(zlnz�z) 10=�2(�1�limz!0+zlnz):ByL'Hospital'srule,limz!0+zlnz=0,soV=2.(AcalculationofVbyshellsisin[11].)Nextwecomputethevolumebyverticalslicesinplanesx=constant.Verticalslicesarescaledbellcurves:lookattheblackcontourlinesinthepicture.Theequationofthebellcurvealongthetopoftheverticalslicewithx-coordinatexisz=e�1 2(x2+y2),whereyvariesandxis xed.Then 4KEITHCONRAD V=Z1�1A(x)dx,whereA(x)istheareaofthex-slice:A(x)=Z1�1e�1 2(x2+y2)dy=e�1 2x2Z1�1e�1 2y2dy=e�1 2x2I:ThusV=Z1�1A(x)dx=Z1�1e�1 2x2Idx=IZ1�1e�1 2x2dx=I2.ComparingthetwoformulasforV,wehave2=I2,soI=p 2.6.SixthProof:The�-functionForanyintegern0,wehaven!=Z10tne�tdt.Forx�0wede ne�(x)=Z10txe�tdt t;so�(n)=(n�1)!whenn1.Usingintegrationbyparts,�(x+1)=x�(x).Oneofthebasicpropertiesofthe�-function[15,pp.193{194]is(6.1)�(x)�(y) �(x+y)=Z10tx�1(1�t)y�1dt: THEGAUSSIANINTEGRAL5Setx=y=1=2:�1 22=Z10dt p t(1�t):Note�1 2=Z10p te�tdt t=Z10e�t p tdt=Z10e�x2 x2xdx=2Z10e�x2dx=2J;so4J2=R10dt=p t(1�t).Withthesubstitutiont=sin2,4J2=Z=202sincosd sincos=2 2=;soJ=p =2.Equivalently,�(1=2)=p .Anymethodthatproves�(1=2)=p isalsoamethodthatcalculatesZ10e�x2dx.7.SeventhProof:AsymptoticestimatesWewillshowJ=p =2byatechniquewhosestepsarebasedon[16,p.371].Forx0,powerseriesexpansionsshow1+xex1=(1�x).Reciprocatingandreplacingxwithx2,weget(7.1)1�x2e�x21 1+x2:forallx2R.Foranypositiveintegern,raisethetermsin(7.1)tothenthpowerandintegratefrom0to1:Z10(1�x2)ndxZ10e�nx2dxZ10dx (1+x2)n:Underthechangesofvariablesx=sinontheleft,x=y=p ninthemiddle,andx=tanontheright,(7.2)Z=20(cos)2n+1d1 p nZp n0e�y2dyZ=40(cos)2n�2d:SetIk=R=20(cos)kd,soI0==2,I1=1,and(7.2)implies(7.3)p nI2n+1Zp n0e�y2dyp nI2n�2:Wewillshowthatask!1,kI2k!=2.Thenp nI2n+1=p n p 2n+1p 2n+1I2n+1!1 p 2r  2=p  2andp nI2n�2=p n p 2n�2p 2n�2I2n�2!1 p 2r  2=p  2;soby(7.3)Zp n0e�y2dy!p =2.ThusJ=p =2. 6KEITHCONRADToshowkI2k!=2, rstwecomputeseveralvaluesofIkexplicitlybyarecursion.Usingintegrationbyparts,Ik=Z=20(cos)kd=Z=20(cos)k�1cosd=(k�1)(Ik�2�Ik);so(7.4)Ik=k�1 kIk�2:Using(7.4)andtheinitialvaluesI0==2andI1=1,the rstfewvaluesofIkarecomputedandlistedinTable1.k Ik k Ik 0 =2 1 12 (1=2)(=2) 3 2/34 (3=8)(=2) 5 8/156 (15=48)(=2) 7 48/105Table1.FromTable1weseethat(7.5)I2nI2n+1=1 2n+1 2for0n3,andthiscanbeprovedforallnbyinductionusing(7.4).Since0cos1for2[0;=2],wehaveIkIk�1Ik�2=k k�1Ikby(7.4),soIk�1Ikask!1.Therefore(7.5)impliesI22n1 2n 2=)(2n)I22n! 2asn!1.Then(2n+1)I22n+1(2n)I22n! 2asn!1,sokI2k!=2ask!1.ThiscompletesourproofthatJ=p =2.Remark7.1.Thisproofiscloselyrelatedtothe fthproofusingthe�-function.Indeed,by(6.1)�(k+1 2)�(1 2) �(k+1 2+1 2)=Z10t(k+1)=2+1(1�t)1=2�1dt;andwiththechangeofvariablest=(cos)2for0=2,theintegralontherightisequalto2R=20(cos)kd=2Ik,so(7.5)isthesameasI2nI2n+1=�(2n+1 2)�(1 2) 2�(2n+2 2)�(2n+2 2)�(1 2) 2�(2n+3 2)=�(2n+1 2)�(1 2)2 4�(2n+1 2+1)=�(2n+1 2)�(1 2)2 42n+1 2�(2n+1 2)=�(1 2)2 2(2n+1): THEGAUSSIANINTEGRAL7By(7.5),=�(1=2)2.Wesawinthe fthproofthat�(1=2)=p ifandonlyifJ=p =2.8.EighthProof:Stirling'sFormulaBesidestheintegralformulaZ1�1e�1 2x2dx=p 2thatwehavebeendiscussing,anotherplaceinmathematicswherep 2appearsisinStirling'sformula:n!nn enp 2nasn!1:In1730DeMoivreprovedn!C(nn=en)p nforsomepositivenumberCwithoutbeingabletodetermineC.StirlingsoonthereaftershowedC=p 2andwounduphavingthewholeformulanamedafterhim.WewillshowthatdeterminingthattheconstantCinStirling'sformulaisp 2isequivalenttoshowingthatJ=p =2(or,equivalently,thatI=p 2).Applying(7.4)repeatedly,I2n=2n�1 2nI2n�2=(2n�1)(2n�3) (2n)(2n�2)I2n�4...=(2n�1)(2n�3)(2n�5)(5)(3)(1) (2n)(2n�2)(2n�4)(6)(4)(2)I0:Inserting(2n�2)(2n�4)(2n�6)(6)(4)(2)inthetopandbottom,I2n=(2n�1)(2n�2)(2n�3)(2n�4)(2n�5)(6)(5)(4)(3)(2)(1) (2n)((2n�2)(2n�4)(6)(4)(2))2 2=(2n�1)! 2n(2n�1(n�1)!)2 2:ApplyingDeMoivre'sasymptoticformulan!C(n=e)np n,,I2nC((2n�1)=e)2n�1p 2n�1 2n(2n�1C((n�1)=e)n�1p n�1)2 2=(2n�1)2n1 2n�1p 2n�1 2n22(n�1)Ce(n�1)2n1 (n�1)2(n�1) 2asn!1.Foranya2R,(1+a=n)n!eaasn!1,so(n+a)neann.Substitutingthisintotheaboveformulawitha=�1andnreplacedby2n,(8.1)I2ne�1(2n)2n1 p 2n 2n22(n�1)Ce(e�1nn)21 n2n 2= Cp 2n:SinceIk�1Ik,theoutertermsin(7.3)arebothasymptotictop nI2n=(Cp 2)by(8.1).ThereforeZp n0e�y2dy! Cp 2asn!1,soJ==(Cp 2).ThereforeC=p 2ifandonlyifJ=p =2. 8KEITHCONRAD9.NinthProof:TheoriginalproofTheoriginalproofthatJ=p =2isduetoLaplace[8]in1774.(AnEnglishtranslationofLaplace'sarticleismentionedinthebibliographiccitationfor[8],withpreliminarycommentsonthatarticlein[17].)Hewantedtocompute(9.1)Z10dx p �logx:Settingy=p �logx,thisintegralis2R10e�y2dy=2J,soweexpect(9.1)tobep .Laplace'sstartingpointforevaluating(9.1)wasaformulaofEuler:(9.2)Z10xrdx p 1�x2sZ10xs+rdx p 1�x2s=1 s(r+1) 2forpositiverands.(Laplacehimselfsaidthisformulaheld\whateverbe"rors,butifs0thenthenumberunderthesquarerootisnegative.)Accepting(9.2),letr!0inittoget(9.3)Z10dx p 1�x2sZ10xsdx p 1�x2s=1 s 2:Nowlets!0in(9.3).Then1�x2s�2slogxbyL'Hopital'srule,so(9.3)becomesZ10dx p �logx2=:Thus(9.1)isp .Euler'sformula(9.2)looksmysterious,butwehavemetitbefore.Intheformulaletxs=coswith0=2.Thenx=(cos)1=s,andaftersomecalculations(9.2)turnsinto(9.4)Z=20(cos)(r+1)=s�1dZ=20(cos)(r+1)=sd=1 (r+1)=s 2:WeusedtheintegralIk=R=20(cos)kdbeforewhenkisanonnegativeinteger.Thisnotationmakessensewhenkisanypositiverealnumber,andthen(9.4)assumestheformI I +1=1 +1 2for =(r+1)=s�1,whichis(7.5)withapossiblynonintegralindex.Lettingr=0ands=1=(2n+1)in(9.4)recovers(7.5).Lettings!0in(9.3)correspondstolettingn!1in(7.5),sothe7thproofisinessenceamoredetailedversionofLaplace's1774argument.10.TenthProof:ResiduetheoremWewillcalculateZ1�1e�x2=2dxusingcontourintegralsandtheresiduetheorem.However,wecan'tjustintegratee�z2=2,asthisfunctionhasnopoles.Foralongtimenobodyknewhowtohandlethisintegralusingcontourintegration.Forinstance,in1914Watson[19,p.79]wrote\Cauchy'stheoremcannotbeemployedtoevaluateallde niteintegrals;thusZ10e�x2dxhasnotbeenevaluatedexceptbyothermethods."Inthe1940sseveralcontourintegralsolutionswerepublishedusingawkwardcontourssuchasparallelograms[10],[12,Sect.5](see[2,Exer.9,p.113]forarecentappearance).OurapproachwillfollowKneser[6,p.121](seealso[13,pp.413{414]or[21]),usingarectangularcontourandthefunctione�z2=2 1�e�p (1+i)z: THEGAUSSIANINTEGRAL9Thisfunctioncomesoutofnowhere,soour rsttaskistomotivatetheintroductionofthisfunction.Weseekameromorphicfunctionf(z)tointegratearoundtherectangularcontour Rinthe gurebelow,withverticesat�R,R,R+ib,and�R+ib,wherebwillbe xedandweletR!1. Supposef(z)!0alongtherightandleftsidesof RuniformlyasR!1.ThenbyapplyingtheresiduetheoremandlettingR!1,wewouldobtain(iftheintegralsconverge)Z1�1f(x)dx+Z�11f(x+ib)dx=2iXaResz=af(z);wherethesumisoverpolesoff(z)withimaginarypartbetween0andb.ThisisequivalenttoZ1�1(f(x)�f(x+ib))dx=2iXaResz=af(z):Thereforewewantf(z)tosatisfy(10.1)f(z)�f(z+ib)=e�z2=2;wheref(z)andbneedtobedetermined.Let'stryf(z)=e�z2=2=d(z),foranunknowndenominatord(z)whosezerosarepolesoff(z).Wewantf(z)tosatisfy(10.2)f(z)�f(z+)=e�z2=2forsome(whichwillnotbepurelyimaginary,so(10.1)doesn'tquitework,but(10.1)isonlymotivation).Substitutinge�z2=2=d(z)forf(z)in(10.2)givesus(10.3)e�z2=2 1 d(z)�e�z�2=2 d(z+)!=e�z2=2:Supposed(z+)=d(z).Then(10.3)impliesd(z)=1�e�z�2=2;andwiththisde nitionofd(z),f(z)satis es(10.2)ifandonlyife2=1,orequivalently222iZ.Thesimplestnonzerosolutionis=p (1+i).Fromnowonthisisthevalueof,soe�2=2=e�i=�1andthenf(z)=e�z2=2 d(z)=e�z2=2 1+e�z;whichisKneser'sfunctionmentionedearlier.Thisfunctionsatis es(10.2)andwehenceforthignorethemotivation(10.1).Polesoff(z)areatoddintegralmultiplesof=2.Wewillintegratethisf(z)aroundtherectangularcontour Rbelow,whoseheightisIm(). 10KEITHCONRAD Thepolesoff(z)nearesttheoriginareplottedinthe gure;theyliealongtheliney=x.Theonlypoleoff(z)inside R(forR�p =2)isat=2,sobytheresiduetheoremZ Rf(z)dz=2iResz==2f(z)=2ie�2=8 (�)e�2=2=2ie32=8 �p (1+i)=p 2:AsR!1,thevalueofjf(z)jtendsto0uniformlyalongtheleftandrightsidesof R,sop 2=Z1�1f(x)dx+Z�1+ip 1+ip f(z)dz=Z1�1f(x)dx�Z1�1f(x+ip )dx:Inthesecondintegral,writeip as�anduse(real)translationinvarianceofdxtoobtainp 2=Z1�1f(x)dx�Z1�1f(x+)dx=Z1�1(f(x)�f(x+))dx=Z1�1e�x2=2dxby(10:2):11.EleventhProof:FouriertransformsForacontinuousfunctionf:R!Cthatisrapidlydecreasingat1,itsFouriertransformisthefunctionFf:R!Cde nedby(Ff)(y)=Z1�1f(x)e�ixydx:Forexample,(Ff)(0)=R1�1f(x)dx.HerearethreepropertiesoftheFouriertransform.Iffisdi erentiable,thenafterusingdi erentiationundertheintegralsignontheFouriertransformoffweobtain(Ff)0(y)=Z1�1�ixf(x)e�ixydx=�i(F(xf(x)))(y): THEGAUSSIANINTEGRAL11UsingintegrationbypartsontheFouriertransformoff,withu=f(x)anddv=e�ixydx,weobtainF(f0)(y)=iy(Ff)(y):IfweapplytheFouriertransformtwicethenwerecovertheoriginalfunctionuptointeriorandexteriorscaling:(11.1)(F2f)(x)=2f(�x):Let'sshowtheappearanceof2in(11.1)isequivalenttotheevaluationofIasp 2.Fixinga�0,setf(x)=e�ax2,sof0(x)=�2axf(x):ApplyingtheFouriertransformtobothsidesofthisequationimpliesiy(Ff)(y)=�2a1 �i(Ff)0(y),whichsimpli esto(Ff)0(y)=�1 2ay(Ff)(y).Thegeneralsolutionofg0(y)=�1 2ayg(y)isg(y)=Ce�y2=(4a),so(Ff)(y)=Ce�y2=(4a)forsomeconstantC.Lettinga=1 2,sof(x)=e�x2=2,weobtain(Ff)(y)=Ce�y2=2=Cf(y):Settingy=0,theleftsideis(Ff)(0)=R1�1e�x2=2dx=I,soI=Cf(0)=C.ApplyingtheFouriertransformtobothsidesoftheequation(Ff)(y)=Cf(y),weget2f(�x)=C(Ff)(x)=C2f(x).Atx=0thisbecomes2=C2,soI=C=p 2.SinceI�0,thenumberIisp 2.Ifwedidn'tknowtheconstantontherightsideof(11.1)were2,whateveritsvalueiswouldwindupbeingC2,sosaying2appearsontherightsideof(11.1)isequivalenttosayingI=p 2.References[1]D.Bell,\Poisson'sremarkablecalculation{amethodoratrick?"Elem.Math.65(2010),29{36.[2]C.A.BerensteinandR.Gay,ComplexVariables,Springer-Verlag,NewYork,1991.[3]A.L.Delgado,\ACalculationofZ10e�x2dx,"TheCollegeMath.J.34(2003),321{323.[4]H.Iwasawa,\GaussianIntegralPuzzle,"Math.Intelligencer31(2009),38{41.[5]T.P.Jameson,\TheProbabilityIntegralbyVolumeofRevolution,"MathematicalGazette78(1994),339{340.[6]H.Kneser,Funktionentheorie,VandenhoeckandRuprecht,1958.[7]P.S.Laplace,TheorieAnalytiquedesProbabilites,Courcier,1812.[8]P.S.Laplace,\Memoiresurlaprobabilitedescausesparlesevenemens,"OeuvresCompletes8,27{65.(Englishtrans.byS.Stigleras\MemoirontheProbabilityofCausesofEvents,"StatisticalScience1(1986),364{378.)[9]P.M.Lee,http://www.york.ac.uk/depts/maths/histstat/normal_history.pdf.[10]L.Mirsky,TheProbabilityIntegral,Math.Gazette33(1949),279.Onlineathttp://www.jstor.org/stable/3611303.[11]C.P.NicholasandR.C.Yates,\TheProbabilityIntegral,"Amer.Math.Monthly57(1950),412{413.[12]G.Polya,\RemarksonComputingtheProbabilityIntegralinOneandTwoDimensions,"pp.63{78inBerkeleySymp.onMath.Statist.andProb.,Univ.CaliforniaPress,1949.[13]R.Remmert,TheoryofComplexFunctions,Springer-Verlag,1991.[14]M.Rozman,\EvaluateGaussianintegralusingdi erentiationundertheintegralsign,"CoursenotesforPhysics2400(UConn),Spring2016.[15]W.Rudin,PrinciplesofMathematicalAnalysis,3rded.,McGraw-Hill,1976.[16]M.Spivak,Calculus,W.A.Benjamin,1967.[17]S.Stigler,\Laplace's1774MemoironInverseProbability,"StatisticalScience1(1986),359{363.[18]J.vanYzeren,\Moivre'sandFresnel'sIntegralsbySimpleIntegration,"Amer.Math.Monthly86(1979),690{693. 12KEITHCONRAD[19]G.N.Watson,ComplexIntegrationandCauchy'sTheorem,CambridgeUniv.Press,Cambridge,1914.[20]http://gowers.wordpress.com/2007/10/04/when-are-two-proofs-essentially-the-same/#comment-239.[21]http://math.stackexchange.com/questions/34767/int-infty-infty-e-x2-dx-with-complex-analysis.[22]http://math.stackexchange.com/questions/390850/integrating-int-infty-0-e-x2-dx-using-feynmans-parametrization-trick