/
Multiplicative Bounds for Metric Labeling Multiplicative Bounds for Metric Labeling

Multiplicative Bounds for Metric Labeling - PowerPoint Presentation

camstarmy
camstarmy . @camstarmy
Follow
342 views
Uploaded On 2020-06-22

Multiplicative Bounds for Metric Labeling - PPT Presentation

M Pawan Kumar École Centrale Paris Joint work with Phil Torr Daphne Koller Metric Labeling Variables V V 1 V 2 V n Metric Labeling Variables V V ID: 783354

rounding move interval hierarchical move rounding hierarchical interval labels linear labeling multiplicative metric variables programming label making based algorithmscomparisonrounding

Share:

Link:

Embed:

Download Presentation from below link

Download The PPT/PDF document "Multiplicative Bounds for Metric Labelin..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Multiplicative Boundsfor Metric Labeling

M. Pawan KumarÉcole Centrale Paris

Joint work with Phil

Torr

, Daphne Koller

Slide2

Metric Labeling

Variables

V

= { V

1

, V

2

, …,

V

n

}

Slide3

Metric Labeling

Variables V = { V1, V2, …, Vn}

Slide4

Metric Labeling

VaVb

Labels

L

= {

l

1

,

l

2

, …,

l

h

}

Variables

V

= { V

1

, V

2

, …,

V

n

}

Labeling f: { 1, 2, …, n}

{1, 2, …, h}

E(f)

=

Σ

a

θa(f(a))

+ Σ(a,b) wabd

(f(a),f(b))

minf

θ

a(f(a))

θb(f(b))

w

abd(f(a),f(b))

w

ab

≥ 0

d is metric

Slide5

Metric Labeling

VaVb

E(f)

min

f

NP hard

=

Σ

a

θ

a

(f(a))

+

Σ

(

a,b

)

w

ab

d

(

f(a),f(b))

Low-level vision applications

Slide6

Minka. Expectation Propagation

for Approximate Bayesian Inference, UAI, 2001Murphy et al. Loopy Belief Propagation: An Empirical Study, UAI, 1999Winn et al. Variational Message Passing, JMLR, 2005Yedidia et al. Generalized Belief Propagation, NIPS, 2001Besag. On the Statistical Analysis of Dirty Pictures, JRSS, 1986Boykov et al. Fast Approximate Energy Minimization via Graph Cuts, PAMI, 2001Komodakis et al. Fast, Approximately Optimal Solutions for Single and Dynamic MRFs, CVPR, 2007Lempitsky et al. Fusion Moves for Markov Random Field Optimization, PAMI, 2010Chekuri et al. Approximation Algorithms for Metric Labeling, SODA, 2001Goemans et al. Improved Approximate Algorithms for Maximum-Cut, JACM, 1995Muramatsu et al. A New SOCP Relaxation for Max-Cut, JORJ, 2003Ravikumar

et al. QP Relaxations for

Metric Labeling

, ICML,

2006

Alahari

et al. Dynamic Hybrid

Algorithms for MAP Inference, PAMI 2010

Kohli et al. On Partial Optimality in Multilabel MRFs, ICML, 2008

Rother et al. Optimizing Binary MRFs via Extended Roof Duality, CVPR, 2007

...Approximate Algorithms

Slide7

Outline

Linear Programming RelaxationMove-Making AlgorithmsComparisonRounding-based Moves

Slide8

Integer Linear Program

Number of facets grows exponentially in problem size

Minimize a linear function over a set of feasible solutions

Indicator

x

a

(

i

)

{0,1} for each variable

V

a

and label li

Slide9

Linear Programming Relaxation

Schlesinger, 1976; Chekuri et al., 2001; Wainwright et al., 2003Indicator xa(i)  {0,1} for each variable Va and label li

Slide10

Linear Programming Relaxation

Schlesinger, 1976; Chekuri et al., 2001; Wainwright et al., 2003Indicator xa(i)

[0,1] for each variable

V

a

and label l

i

Slide11

Outline

Linear Programming RelaxationMove-Making AlgorithmsComparisonRounding-based Moves

Slide12

Move-Making Algorithms

Space of All Labelingsf

Slide13

Expansion Algorithm

Variables take label lα or retain current labelSlide courtesy Pushmeet KohliBoykov

,

Veksler

and

Zabih

, 2001

Slide14

Expansion Algorithm

Sky

House

Tree

Ground

Initialize with Tree

Status:

Expand Ground

Expand House

Expand Sky

Slide courtesy

Pushmeet

Kohli

Variables take label

l

α

or

retain current label

Boykov

,

Veksler

and

Zabih

, 2001

Slide15

Outline

Linear Programming RelaxationMove-Making AlgorithmsComparisonRounding-based Moves

Slide16

Multiplicative Bounds

f*: Optimal Labelingf: Estimated LabelingΣa θa(f(a)) + Σ(a,b) sabd(f(a),f(b))

Σ

a

θ

a

(f*(a))

+

Σ(a,b)

sabd(f*(a),f*(b))

Slide17

Multiplicative Bounds

f*: Optimal Labelingf: Estimated Labeling≤BΣa

θ

a

(f(a))

+

Σ

(

a,b

) sab

d(f(a),f(b))

Σa θa(f*(a))

+ Σ(a,b) sabd(f*(a),

f*(b))

Slide18

Multiplicative Bounds

Expansion

LP

Potts

2

2

Metric

2M

O(log h)

Truncated

Linear

2M

2 + √2

Truncated

Quadratic

2M

O(√M)

M = ratio of maximum and minimum distance

Slide19

Outline

Linear Programming RelaxationMove-Making AlgorithmsComparisonRounding-based MovesComplete RoundingInterval RoundingHierarchical Rounding

Slide20

Complete Rounding

Treat xa(i)  [0,1] as probability that f(a) = i

Cumulative probability

y

a

(

i

)

=

Σ

j≤i

x

a(j)

0

y

a

(1)

y

a

(2)

y

a

(h) = 1

r

Generate a random number r

 (0,1]

Assign the label next to r

y

a

(k)

y

a

(

i

)

Slide21

Complete Move

Va

V

b

θ

ab

(

i,k

) =

s

ab

d

(

i,k

)

NP-hard

Slide22

Complete Move

Va

V

b

θ

ab

(

i,k

) =

s

ab

d

’(

i,k

)

d’(

i,k

)

≥ d(

i,k

)

d’ is

submodular

Slide23

Complete Move

Va

V

b

θ

ab

(

i,k

) =

s

ab

d

’(

i,k

)

d’(

i,k

)

≥ d(

i,k

)

d’ is

submodular

Slide24

Complete Move

New problem can be solved using minimum cut

Same multiplicative bound as complete rounding

Multiplicative bound is tight

Slide25

Outline

Linear Programming RelaxationMove-Making AlgorithmsComparisonRounding-based MovesComplete RoundingInterval RoundingHierarchical Rounding

Slide26

Interval Rounding

Treat xa(i)  [0,1] as probability that f(a) = i

Cumulative probability

y

a

(

i

)

=

Σ

j≤i

x

a(j)

0

y

a

(1)

y

a

(2)

y

a

(h) = 1

y

a

(k)

y

a

(

i

)

Choose an interval of length h’

Slide27

Interval Rounding

Treat xa(i)  [0,1] as probability that f(a) = i

Cumulative probability

y

a

(

i

)

=

Σ

j≤i

x

a(j)

r

Generate a random number r

 (0,1]

Assign the label next to r

if it is within the interval

y

a

(k)

y

a

(

i

)

Choose an interval of length

h’

REPEAT

Slide28

Interval Move

Va

V

b

θ

ab

(

i,k

) =

s

ab

d

(

i,k

)

Choose an interval of length h’

Slide29

Interval Move

Va

V

b

θ

ab

(

i,k

) =

s

ab

d

(

i,k

)

Choose an interval of length h’

Add the current labels

Slide30

Interval Move

Va

V

b

θ

ab

(

i,k

) =

s

ab

d

’(

i,k

)

Choose an interval of length h’

Add the current labels

d’(

i,k

)

≥ d(

i,k

)

d’ is

submodular

Solve to update labels

Repeat until convergence

Slide31

Interval Move

Each problem can be solved using minimum cut

Same multiplicative bound as interval rounding

Multiplicative bound is tight

Kumar and

Torr

, NIPS 2008

Slide32

Outline

Linear Programming RelaxationMove-Making AlgorithmsComparisonRounding-based MovesComplete RoundingInterval RoundingHierarchical Rounding

Slide33

Hierarchical Rounding

L1L2l1l2l3

l

4

l

5

l

6

l

7

l

8

l

9

L

3

Hierarchical clustering of labels (e.g. r-HST metrics)

Slide34

Hierarchical Rounding

L1L2l1l2l3

l

4

l

5

l

6

l

7

l

8

l

9

L

3

Assign variables to labels L

1

, L

2

or L

3

Move down the hierarchy until the leaf level

Slide35

Hierarchical Rounding

L1L2l1l2l3

l

4

l

5

l

6

l

7

l

8

l

9

L

3

Assign variables to labels l

1

, l

2

or l

3

Slide36

Hierarchical Rounding

L1L2l1l2l

3

l

4

l

5

l

6

l

7

l

8

l

9

L

3

Assign variables to labels l

4

, l

5

or l

6

Slide37

Hierarchical Rounding

L1L2l1l2l

3

l

4

l

5

l

6

l

7

l

8

l

9

L

3

Assign variables to labels l

7

, l

8

or l

9

Slide38

Hierarchical Move

L1L2l1l2l3

l

4

l

5

l

6

l

7

l

8

l

9

L

3

Hierarchical clustering of labels (e.g. r-HST metrics)

Slide39

Hierarchical Move

L1L2l1l2l3

l

4

l

5

l

6

l

7

l

8

l

9

L

3

Obtain labeling f

1

restricted to labels {l

1

,l

2

,l

3

}

Slide40

Hierarchical Move

L1L2l1l2l

3

l

4

l

5

l

6

l

7

l

8

l

9

L

3

Obtain labeling f

2

restricted to labels {l

4

,l

5

,l

6

}

Slide41

Hierarchical Move

L1L2l1l2l

3

l

4

l

5

l

6

l

7

l

8

l

9

L

3

Obtain labeling f

3

restricted to labels {l

7

,l

8

,l

9

}

Slide42

Hierarchical Move

L1L2L3

V

a

V

b

f

1

(a)

f

2

(a)

f

3

(a)

Move up the hierarchy until we reach the root

f

1

(b)

f

2

(b)

f

3

(b)

Slide43

Hierarchical Move

Each problem can be solved using minimum cut

Same multiplicative bound as hierarchical rounding

Multiplicative bound is tight

Kumar and Koller, UAI 2009

Slide44

Conclusion

Move-Making

LP

Potts

2

2

Metric

O(log h)

O(log h)

Truncated

Linear

2 + √2

2 + √2

Truncated

Quadratic

O(√M)

O(√M)

M = ratio of maximum and minimum distance

Slide45

Open Problems

Moves for general rounding schemesHigher-order energy functionsBetter comparison criterion

Slide46

Questions?

http://www.centrale-ponts.fr/personnel/pawan