/
Diractometers and Reectometers In the previous chapter we described the basic elements Diractometers and Reectometers In the previous chapter we described the basic elements

Diractometers and Reectometers In the previous chapter we described the basic elements - PDF document

myesha-ticknor
myesha-ticknor . @myesha-ticknor
Follow
583 views
Uploaded On 2014-12-22

Diractometers and Reectometers In the previous chapter we described the basic elements - PPT Presentation

In this chapter we deal with the experimental arrangement as a whole There are general aspects to consider in settingup an xray experiment The sample is illuminated by an incident beam striking the sample surface under a de64257nite angle of inciden ID: 27736

this chapter

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Diractometers and Reectometers In the pr..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2DiractometersandRe”ectometersInthepreviouschapterwedescribedthebasicelementsofx-rayequipment,namely,x-raysources,opticalelementstode“nethebeampassandaproperbandpassofenergy,andvariousrecordingunitstodetectthex-rays.Inthischapterwedealwiththeexperimentalarrangementasawhole.Thereare 322DiractometersandRe”ectometersonehastocompromisebetweenthedegreeofresolutionandthetimenec-essaryformeasurement.Inthischapterwewillshowthathighresolutionisnotrequiredingeneral.Sampleswithmosaicspread,heterostructureswithalargelatticemismatchorepilayerswithathicknessofafew100nmcanbeinvestigatedunderslightlyrelaxedconditionsofresolutionwithoutlossof2.1X-RayRe”ectometersX-rayspecularre”ectometryisusedtomeasurethethicknessofindividualthinlayers,theverticalspacingofamultilayerstacking,thesurfaceandinterfaceroughnesses,andtheaveragedensityofalayeredsystem.AccordingtothelawofFresnelre”ectivity(Sects.5.2and6.4),theintensityleavingasmoothsurfacedecreasesveryrapidlyastheangleofincidenceincreases.Torecordthere”ectedintensityovermorethan6ordersofmagnitudeoneneedsahighlyintensiveincidentbeamand/oradetectorwithlownoise.Theapparativerequirementsshouldbedemonstratedbythefollowingexamples.Incaseoflayeredsamplesthelayerthicknessisdeterminedfromtheangulardistancebetweenthethicknessoscillations(Kiessigmaxima,seeSect.8.1).Therequiredangularresolutiondependsonthetotalthicknessof“lm.Filmthicknessesofabout50nmprovideanangulardistancebetweenKiessigmaximaofabout0.1.Sucha“lmcanbeinvestigatedusingthe-doubletofasealedtubecollimatedbytwospatiallyseparatedlocatedslitsbeforethesampleandandanadditionalslitplacedbeforethedetector. Fig.2.1.Generalsetupofahigh-resolutionx-rayre”ectometer. 2.1X-RayRe”ectometers33Theprecisedeterminationofthecriticalangleoftotalexternalre”ection,,whichisnecessaryforelectrondensityanalysis,demandsamuchbetterangularresolution.Oftenitissucienttomatchapproximatelywiththeangularpositionofhalf-intensitycomparedwiththeprimarybeam(Sect.8.1).Theaveragedensityisobtainedwithanaccuracyof5%ifismeasuredtoanaccuracyof2.3%.ItrequirespreciseangleadjustmentontheorderofItfollowsfromthesepreviousestimatesthatare”ectivityexperimentneedshigh”uxatthesamplesite,moderateangularresolutioninmostcases,butaccurateangleadjustmentbetweensampleanddetectorcircle.Athome-laboratoriesanangle-dispersivere”ectometer(Fig.2.1)shouldconsistofthesourceattachedtoaphoton-collectingsystemasG¨obel-mirror(completedbybeamcompressor),horizontalandverticalslitstode“nethebeamsize,andadetectorwithalargedynamicalrange.Theslitscanbeinsertedeitherbeforeorafterthesample.Theangularresolutionoftheexperimentisadditionallycontrolledbyaknife-edgeattachedclosetothecenterofgoniometer.Boththesamplecircle,denotedby,andthedetectorcircle,2,movewithanaccuracyofThespecularre”ectivityisrecordedbyrunninganscan,wherecorrespondstothetrueangleofincidenceand2istheangularpositionofthedetectormeasuredwithrespecttotheincidentbeamdirection.Bothandtheexitanglearemovingsimultaneouslybythesameamount.Withso-calledre”ectometers,wherethesamplestays“xed,varydirectlyinsteadofand2whichisthecasewithatequipment,wherethex-raytubeis“xed.ThepropertiesofthescanandotherswithdierentangularratioswillbedescribedinSect.3.2inThefunctionoftheknife-edge,showninFig.2.1,canbeexplainedasfollows.Forgeometricalandintensityreasons,bothcannotbereducedtoomuch.Becausetheincidentbeamdivergenceandthedetectoracceptancearelarge,theirradiatedsampleareamustbereducedtoachievesucientangularresolution.Thisisachievedbysinkingtheknife-edgeveryclosetotheaxisofgoniometerrotation,whichadditionallyhelpstobringthesamplesurfacetotherotationcenter(seebelow).Undertheseconditions,onlythosepartsofthebeamreachthedetector,whichareescapingthesamplestraightbeneaththeknife-edge.Theextremelimitationofthescatteringareareducesthedetectableintensitybyseveralordersofmagnitude.Thisdisadvantagecanbecompensatedforbyinsertionofaphotoncollectorinfrontofthesample(seeFig1.9).AnalternativesetupisshowninFig.2.2.The“rstG¨obel-mirrorissuf-“cienttosuppresstheline.Highresolutionstillcanbeachievedbyre-placingthebeamcompressorinFig.2.1byaBartelsmonochromator(Sect.1.2andFig.1.8).Relaxedresolutionbuthigher”uxisachievedbyremov-ingthebeamcompressorbutsettingasecondG¨obelmirrorinfrontofthe 342DiractometersandRe”ectometers Fig.2.2.Schemeofapowderdiractometerappliedforx-rayre”ectometrywithrelaxedangularresolution.detector.Thegainofdetectedintensityisduetothefactthatthesecondobelmirrorincreasesthebeamcrosssection.Specularlyandnon-specularlyscatteringphotonsarede”ectedtowardthecenterofapointdetector.Thisset-upcorrespondstothatofapowderdiractometer[167].Atsynchrotronfacilitiestheincidentbeamisparallelenough.There”ec-tometerhastobeequippedverticallyinordertomakeuseoftheextremecollimationoftheincidentbeaminthisdirection(seeSect1.1).Forangulardispersiveexperimentsonehastoinsertanopticalelementformonochro-mazingtheincidentx-rayspectrum.Thiscanbedoneeitherbeforeorafterthesample.Acompletelydierentarrangementisnecessarytoperformanenergy-dispersiveexperiment(Fig.2.3)[57].Herethewhitebeamstrikesthesamplesurfaceundera“xedandthere”ectedbeamisrecordedbyanenergy…dispersivedetectorata“xedangle2.Inthiscasetheonlyrequirementisanapproximatelyparallelincidentbeamprovidedatasynchrotronfacilitywithoutopticalelementsexceptslits.Inahomelabo-ratoryasucientlyparallelbeamispreparedbypassingthebeamthroughtwoslits“xedatbothendsofanabout1-meter-longtube,whichshouldbeevacuatedtoreduceairscatteringandabsorptionbyair.Onlylowairabsorbancesuppliesthewholewhitespectrumofanx-raytube[238].Theresolutionofanenergy-dispersivescatteringexperimentisdeterminedbytheenergyresolutionofthedetector.Itamountsto(E/E2.5%),whichissucientforthin“lmanalysis.Theadvantageofthisset-upisthepossibilitytorecordtime-dependentprocesses.Thescatteringspectrumalwaysisavail-ableandcanbecontrolleddirectlybytheuser.Theappearanceofintenselinesintheincidentspectrumofasealedtube,theenergydependenceof 2.1X-RayRe”ectometers35sampleabsorbance,andthedetectorresponse(seeSect.1.3)makeitdiculttointerpretthespectrumquantitatively.ForquantitativeanalysisonehastoremovetheKandKlinesfromthebremsstrahlungspectrumaswellasseveral”uorescencelinesexcitedintheequipmentbytheincidentphotons.Thereforetheenergy-dispersiveset-upisrecommendedformeasurementsonarelativescale,thanforabsolutemeasurements.However,usinglaboratorysourcesandchoosing,about5minutessucedtocollectaspectrumofanorganicmultilayersamplewithsatisfyingcountingstatistics[229]. BESSYII 30m Air2m Slits0.1x1mm2  GID Fig.2.3.Setupoftheenergy-dispersivere”ectometerinstalledattheEDRbeam-lineatBESSYII.Itisequippedtomeasuresimultaneouslythere”ectivityandgrazing-incidencediractionofasample.AttheEDRbeamlineofBESSYIIthesamesamplewasmeasuredinabout10secondswithmuchbetterstatistics[57].Hereenergy-dispersivere”ectometryisveryecientforrapidsampleanalysisandevenforroutinemeasurements.Samplealignmentisacrucialproblemforaccuratere”ectivitymeasure-ments.Inparticular,themainerrorofdensitydeterminationviameasure-mentofthecriticalangleoftotalexternalre”ectionistheinaccuratesamplealignment.Alsoatruespecularscancanberecordedonlywhen2isex-actlytwice.Theprocedureofalignmentissameforanangle-andenergy-dispersiveset-upandwillbeexplainedinthefollowing.Inordertomeasuretheanglescorrectly,therotationalaxisofthesamplecircle(-circle)hastobealignedexactlywiththesamplesurface(Fig.2.4).Additionally,onehastomakesurethatthepositionoftherotationaxesofbothcirclescoincideswiththecenteroftheincidentbeam;thatmeansthatthesamplehastoshadowhalfoftheincidentbeam.Withcommercial 362DiractometersandRe”ectometers X-raysource Fig.2.4.Proceduretoalignthesamplesurfacenormalwiththerotationaxisofthere”ectometer.Thisprocedureisgeneralforalltypesofre”ectometersanddiractometersitisaguaranteethattherotationaxesofsampleanddetectorcoincide.However,theproceduretoadjustthesamplesurfaceconsistsofaniterativemovementandrockingofthesampleacrosstheincidentbeam(scan).Bothscanshavetorepeatuntilthepeakintensityofthe…scanishalfoftheintensityoftheincidentbeam,measuredwithoutsample.Inthiscase-axisliesexactlyinthesamplesurfaceandthissurfaceisparalleltotheincident-beamdirection.Afterthisadjustmenttheangularpositionofthesample,however,maynotcoincidewiththezeromarkofthe-circle.Thismightbecausedbysurfacedamageorbyamiscutofthesurfacewithrespecttothebottomplaneofthesample.Additionaltestsarenecessarytorede“netheTodothiswithsucientaccuracyonehastochooseanincidenceangleintherange0and“ndtheangularpositionofspecularlyre”ectedbeamatanangle2.If2doesnotcoincidewith2,thezeropointofthe-circleneedstobere-scaledby(2).Repetitionoftheprocedureatvariousvaluesofimprovestheprecisionofsamplealignment.There”ectivityexperimentsshouldbeoptimizedinsuchawaythatthespecularre”ectivitycanbemeasuredoverawiderangeofThisisnecessarytoshowtypicalfeaturesasBraggpeaksandKiessigfringescharacterizingthesample.DuetothedependenceofFresnelre”ectivitytheintensitydropsover6to8ordersofmagnitude.Sometimesitishelpfultorecordpartsofasinglere”ectivitycurveatdierentconditionsofangularresolutionandcountingtime.Sotheangularrangeclosetocanbedetectedwiththehighestresolutionavailable,butthewideanglerangeshouldberecordedusingarelaxedresolution.Underhomelaboratoryconditionsoneneedstochangetheangularresolution,i.e.,toincreaseordecreaseWhensynchrotronradiationisused,separatedetectionofthelow-angleandwide-anglerangeisnecessaryduetothelimitationofdetectorsensitivity. 2.2High-ResolutionDiractometer372.2High-ResolutionDiractometerInthesemiconductorindustry,inparticular,thenecessitytoanalyzeepitaxi-allygrownhighlyperfectmultilayermaterialsencouragedthedevelopmentofnewtypesofdiractometers.Theyarewelladaptedtomeasurelayerthick-ness,latticemismatchesandlatticestrainsofheterostructures.Theinvestiga-tionofquantumwellstructures,i.e.,thinlayerswiththicknessesoflessthan10nmembeddedwithinmuchthickercladdinglayers,requiresmeasurementofrockingcurvesoverawideangularrangeleftandrightwithrespecttotheBraggpeakofthesubstrate.Themethodofreciprocal-spacemappingmakesitnecessarytohavegoodresolutionintwodirectionsofreciprocalspace.Allthisrequiresahighlyintensebutparallelincidentbeamandalowback-groundassociatedwithagoodaspossibleangularresolution.Theseneedsshouldbesatis“edbyahigh-resolutionset-upatasynchrotronbeamline.Unfortunately,duetothelimitedaccess,suchexperimentalstationscannotbeusedforroutinecharacterization.Thus,mostofmeasurementshavetobeperformedathomelaboratories.Modernhigh-resolutiondiractometersareequippedwithafour-bouncemonochromator(Fig.2.5).Theintensityofthex-raytubeisincreasedbyattachingaG¨obelmirror.Maximumresolulution,thatisnecessaryforreciprocal-spacemapping,isachievedbyuseofachannel-cutanalyzerbeforethedetector.Asforre”ectometers,thediractometermakesmotor-controlledangularstepsonbothsampleanddetectorcircle.Theequipmentissuitedtorecordreciprocal-spacemapsinthevicinityofapar-ticularBraggpeakofthesampleinseveralhours. Fig.2.5.High-resolutiondiractometer. 382DiractometersandRe”ectometersTheequipmentshowninFig.2.5shouldbesimpli“edifthesampleisnothighlyperfect.InthiscasetheBartelsmonochromatorcanbereplacedbyasingle-ordouble-crystalarrangement.Theanalyzercrystalmaybereplacedbyaslitsystemforsimplerockingcurveanalysis.TheachievableangularandenergyresolutioncanbeestimatedusingtheDuMonddiagramsshowninSect.1.2.Using(+)set-up,thedispersionenlargementofeachpeakoftherockingcurvesfollowsfromEq.(1.10)identifyingbytheangulardevia-tionfromthediractionmaximumofthemonochromatorandofsample,respectively.Thebroadeningofthediractioncurvecanreachseveralhundredsecondsofarcifthemonochromator/analyzerandsampleBragganglesdier.Inastrictsense,highresolutionisachievedonlyifmonochro-mator,sample,andanalyzeraremadefromsamematerialandscatteratexactlythesameBraggangles.Theuseofafour-bouncemonochromatorovercomesthisproblem.AsdemonstratedinSect.1.2,itcombinesthe+and++set-upandallowsonetomeasurealwaystheintrinsicrockingcurveofsample.Becausetheapparativebroadeningisverysmall,thetheexploitableintensityissmallcomparedwiththeusageofadouble-crystalarrangement. absorber- mator if Fig.2.6.Generalset-upofahigh-resolutiondiractometerequippedatabeamlineofastorageringfacility.Allpartsoftheequipmenthavetobemechanicallystableonatimescaleofseveralhoursordayssothatreciprocal-spacemapscanberecordedunderconstantconditions(seeSect.3.2).Reciprocal-spacemapsareobtained-scansfordierent2orrunning(scansfordierento-setanglesandplottingtherecordedintensitiesina2Dframe.Torunaparticularscanacrossthereciprocalspace,thesampleandthedetectorcircleshavetomoveinanarbitraryratiowhichdiersfrom1:2.Thesescansmustbesupportedbythediractometersoftware.Infact,com-putersoftwareisanessentialcomponentofmoderndiractometers.Fast 2.3LimitsoftheUseofPowderDiractometers39accesstoacodeofrockingcurvesimulationenablesinterpretationoftheexperimentalcurvesstraightafterthemeasurementandinteractiveaction.However,theuserhastomakesurebeforehandthatthebasicassumptionsofthesimulationsoftwareagreeswiththoseoftheactualexperiment.Finallyweproposeanoptimumarrangementforhigh-resolutiondirac-tionwhichcanbeinstalledatabeamlineatasynchrotronradiationfacility.Aschematicset-upisshownin“g.2.6.Becausethedemandforintensityisnotashigh(about8ordersofmagnititudearesucient)thehighphoton”uxdeliveredbyanundulatorcanbeusedtodesignasetupwithverygoodangularresolution.Aheavyweightgoniometercanhelptoguaranteerepro-duciblestepsoflessthan0.Thesmalldivergenceofthesynchrotronradiationinverticaldirectionshouldnotbeenlargedbybentmirrors.Planemonochromatorcrystalsperformedbyadouble-crystalarrangementsupplyanenergybandpasswitharesolutionontheorderof10.Acollimationlinede“nedbytwopairsofslits,aguidingslitpairstraightafterthemonochro-matorandade“ningslitpairclosebeforethesample,reducethedivergenceoftheincidentbeam.Supposingasourceheightof100mandalengthofthebeamlineof20m,theslitheightof1mmprovidesadivergenceoflessthanonesecondofarc,whichismuchsmallerthantheintrinsichalf-widthofthesiliconmonochromatorcrystal(seeFig.1.5).Despitetheseconstrainsthe”uxatthesamplesitewillexceed10photons/secifwechooseatypi-calundulatorbeamlineofESRF.Finallyaplanemonochromatorshouldbeattachedclosebeforethepointdetectortoguaranteehigh-resolutionoftheexitangle,aswell.2.3LimitsoftheUseofPowderDiractometersSeveralproblemsofx-raycharacterizationcanbesolvedbyusinglow-resolutiondiractometers,i.e.,apowderdiractometer.Ifthelayeredmate-rialisdamaged,theBraggpeaksbecomebroadandlowinintensity.FollowingEq.(1.8),thedivergenceoftheincidentbeamshouldnotbemuchsmallerthantheangularwidthofthediractioncurveofthesampleunderinvestiga-tion.Inthecaseofpoly-crystallinematerialormaterialwithamosaicspreadtheintrinsiccurvewidthmayincreasetoseveralminutesofarc.Herefocusingbeamarrangementsarepreferred.Abentcrystal-monochromatororanalyzerinfrontofthesampleorthedetector,respectively,providesincreasedinten-sityandarelaxedangularresolution.AdisadvantageofthisarrangementisthesimultaneousappearanceoftheKdoubletintherockingcurve,whichhastobetakenintoaccountforthesimulationofthediractioncurves.Figure2.7showsthe(422)diractioncurvesofapartiallyrelaxed40pe-riodInAs/GaAsmultilayerrecorded,“rst,withagraphite-analyzer-equippedpowderdiractometer,similartothatshowninFig.2.2and,second,underhigh-resolutionconditions(seeFig.2.5)usingafour-bouncemonochro-matorwithoutG¨obelmirror.Thetimetakentorecordthehigh-resolution 402DiractometersandRe”ectometers33,033,5 highresolutionlowresolutionintensity[a.u.] Fig.2.7.RockingcurveofanInAs/GaAsmultilayerrecordedwithapow-derdiractometer,similartothatshowninFig.2.2,andwithhigh-resolutioncon-ditions,usingafour-bouncemonochromator.curvewasabout“vetimeslongerthanthatforthepowderdiractometer.ThemaindierencebetweenbothcurvesistheappearanceoftheKatthepowdercurve.Exceptintheregionclosetothesubstratepeak,thesu-perlatticepeaksareclearlyvisible.Here,theyaresmearedoutbecauseofthelowerangularresolutioncomparedwiththehigh-resolutioncurve.Becausethemeasuredangularwidthofsuperlatticepeaksisdeterminedbythemo-saicity,thestructureparametersofthemultilayersamplecanbeestimatedonthebasisofthispowdercurve[290].2.4Grazing-IncidenceDiractionAschematicillustrationoftheset-upofagrazing-incidencediraction(GID)experimentisshowninFig.2.8[89,281].Hereonehastodistinguishbetweenplaneofincidencecontainingandthesurfacenormalandthescatteringplanelyingapproximatelyperpendiculartotheplaneofincidenceandcontainingtheangles.Thelatteronesaremeasuredwithrespecttothediractinglatticeplane.Themethoduni“esin-planeBraggdiractionandout-of-planere”ectivitycombinedwiththefeasibilityfordepthresolu-Theexperimentalset-upisthefollowing:amonochromaticandparallelx-raybeamasde“nedinFig.2.6strikesthesamplesurfaceatanangle 2.4Grazing-IncidenceDiraction41 latticeplane Fig.2.8.Schematicset-upofagrazing-incidencediractionexperiment.tothecriticalangle.Thesampleisrotatedaroundthesurfacenormallyuntilaparticularlatticeplanelyingperpendiculartothesurfaceful“llstheBraggconditionunderanin-planeBraggangle2(seeSect.3.3).Owingtorefractionoftheincomingbeamattheair…sampleinterfacethepenetrationdepthoftheprobingx-raycanbecontrolledbychoosingbesmallerorlargerthan(Fig.2.9).Inthe“rstcasetheincomingbeambecomesevanescentandpropagatesparalleltoandclosebelowthesurface.Theminimumpenetrationdepthisontheorderof4…10nm,dependingonthedensityofmaterial.Onincreasing,thepenetrationdepthwithinthesampleincreasesuptoabout400…600nm.TheGIDgeometryrequirescollimationinbothdirections,perpendicularandparalleltotheplaneofincidence.Ingeneral,aset-uplikethatshowninFig.2.6canbeusedbutwithadditionaleortstogainthein-planeres-olution.Infact,oneneedsasecondmonochromatorinstalledperpendiculartothe“rstone;thisreducesthephoton”uxatthesamplesiteagain.Forpracticalreasonsthedivergencewithrespecttoshouldbeoneorderofmagnitudesmallerthanthatwithrespectto2.Ontheotherhand,amoderatedivergenceregarding2isnecessarytoexcitethecrystaltrun-cationrod(CTR)(seeSect.3.2).Theintensitydistributionalongthecrystaltruncationrodcanberecordedsimultaneouslyasafunctionofusingaposition-sensitivedetector(Sect.1.3).Themeasurementofreciprocal-spacemapsrequirestheinsertionofananalyzercrystal.Becausethere”ectivityofthetruncationrodisontheorderof10,theintensityofasealedtubeisnotenoughtorecordin…planescatteringcurves.Theintensityofarotational- 422DiractometersandRe”ectometers0,00,20,40,60,81,01,21,4 =0.1°=0.34° =0.5°penetrationdepth[nm]]Fig.2.9.TheeectivepenetrationdepthbelowaGaAssurfaceforaGIDexperi-ment,calculatedfordierentincidenceanglesandexitangleanodeissucientforthedetectionofin-planerockingcurvesintegratedoverthewholerange,i.e.,withawideopendetectorwindow.Themeasurement-resolvedcurveswithgoodangularresolutionisonlypossiblewithuseofsynchrotronradiation.integratedmeasurementcanalsobeperformedusingtheenergy-dispersivearrangementshowninFig.2.3.