/
Vector Spaces The idea of vectors dates back to the middle s but our current understanding Vector Spaces The idea of vectors dates back to the middle s but our current understanding

Vector Spaces The idea of vectors dates back to the middle s but our current understanding - PDF document

pasty-toler
pasty-toler . @pasty-toler
Follow
510 views
Uploaded On 2014-12-15

Vector Spaces The idea of vectors dates back to the middle s but our current understanding - PPT Presentation

Even then it took many years to understand the importance and generality of the ideas involved This one underlying idea can be used to describe the forces and accelerations in Newtonian mechanics and the potential functions of electromagnetism and t ID: 24395

Even then took

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Vector Spaces The idea of vectors dates ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

6|VectorSpaces26.2AxiomsTheprecisede nitionofavectorspaceisgivenbylistingasetofaxioms.Forthispurpose,I'lldenotevectorsbyarrowsoveraletter,andI'lldenotescalarsbyGreekletters.Thesescalarswill,forourpurpose,beeitherrealorcomplexnumbers|itmakesnodi erencewhichfornow.*1Thereisafunction,additionofvectors,denoted+,sothat~v1+~v2isanothervector.2Thereisafunction,multiplicationbyscalars,denotedbyjuxtaposition,sothat ~visavector.3(~v1+~v2)+~v3=~v1+(~v2+~v3)(theassociativelaw).4Thereisazerovector,sothatforeach~v,~v+~O=~v.5Thereisanadditiveinverseforeachvector,sothatforeach~v,thereisanothervector~v0sothat~v+~v0=~O.6Thecommutativelawofadditionholds:~v1+~v2=~v2+~v1.7( + )~v= ~v+ ~v.8( )~v= ( ~v).9 (~v1+~v2)= ~v1+ ~v2.101~v=~v.Inaxioms1and2Icalledtheseoperations\functions."Isthattherightuseoftheword?Yes.Withoutgoingintotheprecisede nitionoftheword(seesection12.1),youknowitmeansthatyouhaveoneormoreindependentvariablesandyouhaveasingleoutput.Additionofvectorsandmultiplicationbyscalarscertainly tthatidea.6.3ExamplesofVectorSpacesExamplesofsetssatisfyingtheseaxiomsabound:1Theusualpictureofdirectedlinesegmentsinaplane,usingtheparallelogramlawofaddition.2Thesetofreal-valuedfunctionsofarealvariable,de nedonthedomain[axb].Additionisde nedpointwise.Iff1andf2arefunctions,thenthevalueofthefunctionf1+f2atthepointxisthenumberf1(x)+f2(x).Thatis,f1+f2=f3meansf3(x)=f1(x)+f2(x).Similarly,multiplicationbyascalarisde nedas( f)(x)= (f(x)).Noticeasmallconfusionofnotationinthisexpression.The rstmultiplication,( f),multipliesthescalar bythevectorf;thesecondmultipliesthescalar bythenumberf(x).3Likeexample2,butrestrictedtocontinuousfunctions.Theoneobservationbeyondthepreviousexampleisthatthesumoftwocontinuousfunctionsiscontinuous.4Likeexample2,butrestrictedtoboundedfunctions.Theoneobservationbeyondthepreviousexampleisthatthesumoftwoboundedfunctionsisbounded.5Thesetofn-tuplesofrealnumbers:(a1;a2;:::;an)whereadditionandscalarmultiplicationarede nedby(a1;:::;an)+(b1;:::;bn)=(a1+b1;:::;an+bn) (a1;:::;an)=( a1;:::; an)6Thesetofsquare-integrablereal-valuedfunctionsofarealvariableonthedomain[axb].Thatis,restrictexampletwotothosefunctionswithRbadxjf(x)j21.Axiom1istheonlyonerequiringmorethanasecondtocheck.7Thesetofsolutionstotheequation@2=@x2+@2=@y2=0inany xeddomain.(Laplace'sequation) *Foraniceintroductiononlinesee distance-ed.math.tamu.edu/Math640 ,chapterthree. 6|VectorSpaces5Theintegraloftheright-handsideisbyassumption nite,sothesamemustholdfortheleftside.Thissaysthatthesum(anddi erence)oftwosquare-integrablefunctionsissquare-integrable.Forthisexamplethen,itisn'tverydiculttoshowthatitsatis estheaxiomsforavectorspace,butitrequiresmorethanjustaglance.Thereareafewpropertiesofvectorspacesthatseemtobemissing.Thereisthesomewhatoddnotation~v0fortheadditiveinverseinaxiom5.Isn'tthatjust�~v?Isn'tthezerovectorsimplythenumberzerotimesavector?Yesinbothcases,butthesearetheoremsthatfolloweasilyfromthetenaxiomslisted.Seeproblem 6.20 .I'lldopart(a)ofthatexerciseasanexamplehere:Theorem:thevector~Oisunique.Proof:assumeitisnot,thentherearetwosuchvectors,~O1and~O2.By[4],~O1+~O2=~O1(~O2isazerovector)By[6],theleftsideis~O2+~O1By[4],thisis~O2(~O1isazerovector)Putthesetogetherand~O1=~O2.Theorem:Ifasubsetofavectorspaceisclosedunderadditionandmultiplicationbyscalars,thenitisitselfavectorspace.Thismeansthatifyouaddtwoelementsofthissubsettoeachothertheyremaininthesubsetandmultiplyinganyelementofthesubsetbyascalarleavesitinthesubset.Itisa\subspace."Proof:theassumptionofthetheoremisthataxioms1and2aresatis edasregardsthesubset.Thataxioms3through10holdfollowsbecausetheelementsofthesubsetinherittheirpropertiesfromthelargervectorspaceofwhichtheyareapart.Isthisallthereistoit?Notquite.Axioms4and5takealittlemorethought,andneedtheresultsoftheproblem 6.20 ,parts(b)and(d).6.4LinearIndependenceAsetofnon-zerovectorsislinearlydependentifoneelementofthesetcanbewrittenasalinearcombinationoftheothers.Thesetislinearlyindependentifthiscannotbedone.Bases,Dimension,ComponentsAbasisforavectorspaceisalinearlyindependentsetofvectorssuchthatanyvectorinthespacecanbewrittenasalinearcombinationofelementsofthisset.Thedimensionofthespaceisthenumberofelementsinthisbasis.Ifyoutaketheusualvectorspaceofarrowsthatstartfromtheoriginandlieinaplane,thecommonbasisisdenoted^{,^|.IfIproposeabasisconsistingof^{;�1 2^{+p 3 2^|;�1 2^{�p 3 2^|thesewillcertainlyspanthespace.Everyvectorcanbewrittenasalinearcombinationofthem.Theyarehowever,redundant;thesumofallthreeiszero,sotheyaren'tlinearlyindependentandaren'tabasis.Ifyouusethemasiftheyareabasis,thecomponentsofagivenvectorwon'tbeunique.Maybethat'so.k.andyouwanttodoit,buteitherbecarefulorlookupthemathematicalsubjectcalled\frames."Beginningwiththemostelementaryproblemsinphysicsandmathematics,itisclearthatthechoiceofanappropriatecoordinatesystemcanprovidegreatcomputationaladvantages.Indealingwiththeusualtwoandthreedimensionalvectorsitisusefultoexpressanarbitraryvectorasasumofunitvectors.Similarly,theuseofFourierseriesfortheanalysisoffunctionsisaverypowerfultoolinanalysis.Thesetwoideasareessentiallythesamethingwhenyoulookatthemasaspectsofvectorspaces.Iftheelementsofthebasisaredenoted~ei,andavector~ais~a=Xiai~ei; 6|VectorSpaces7arefunctions,andassuchtheyareelementsofthevectorspaceofexample2.Allyouneedtodonowistoverifythatthesumoftwosolutionsisasolutionandthataconstanttimesasolutionisasolution.That'swhatthephrase\linear,homogeneous"means.Anothercommondi erentialequationisd2 dt2+g `sin=0Thisdescribesthemotionofanundampedpendulum,andthesetofitssolutionsdonotformavectorspace.Thesumoftwosolutionsisnotasolution.The rstofEqs.( 6.5 )hastwoindependentsolutions,x1(t)=e� tcos!0t;andx2(t)=e� tsin!0t(6:6)where =�b=2mand!0=q k m�b2 4m2.ThisisfromEq.(4.8).Anysolutionofthisdi erentialequationisalinearcombinationofthesefunctions,andIcanrestatethatfactinthelanguageofthischapterbysayingthatx1andx2formabasisforthevectorspaceofsolutionsofthedampedoscillatorequation.Ithasdimensiontwo.Thesecondequationofthepair( 6.5 )isathirdorderdi erentialequation,andassuchyouwillneedtospecifythreeconditionstodeterminethesolutionandtodetermineallthethreearbitraryconstants.Inotherwords,thedimensionofthesolutionspaceofthisequationisthree.Inchapter4onthesubjectofdi erentialequations,oneofthetopicswassimultaneousdi erentialequations,coupledoscillations.Thesimultaneousdi erentialequations,Eq.(4.45),arem1d2x1 dt2=�k1x1�k3(x1�x2);andm2d2x2 dt2=�k2x2�k3(x2�x1)andhavesolutionsthatarepairsoffunctions.Inthedevelopmentofsection4.10(atleastfortheequalmass,symmetriccase),Ifoundfourpairsoffunctionsthatsatis edtheequations.Nowtranslatethatintothelanguageofthischapter,usingthenotationofcolumnmatricesforthefunctions.Thesolutionisthevectorx1(t)x2(t)andthefourbasisvectorsforthisfour-dimensionalvectorspaceare~e1=ei!1tei!1t;~e2=e�i!1te�i!1t;~e3=ei!2t�ei!2t;~e4=e�i!2t�e�i!2tAnysolutionofthedi erentialequationsisalinearcombinationofthese.Intheoriginalnotation,youhaveEq.(4.52).Inthecurrentnotationyouhavex1x2=A1~e1+A2~e2+A3~e3+A4~e46.5NormsThe\norm"orlengthofavectorisaparticularlyimportanttypeoffunctionthatcanbede nedonavectorspace.Itisafunction,usuallydenotedbykk,andthatsatis es1.k~vk0;k~vk=0ifandonlyif~v=~O2.k ~vk=j jk~vk3.k~v1+~v2kk~v1k+k~v2k(thetriangleinequality)Thedistancebetweentwovectors~v1and~v2istakentobek~v1�~v2k. 6|VectorSpaces86.6ScalarProductThescalarproductoftwovectorsisascalarvaluedfunctionoftwovectorvariables.Itcouldbedenotedasf(~u;~v),butastandardnotationforitis ~u;~v .Itmustsatisfytherequirements1. ~w;(~u+~v) = ~w;~u + ~w;~v 2. ~w; ~v = ~w;~v 3. ~u;~v *= ~v;~u 4. ~v;~v 0;and ~v;~v =0ifandonlyif~v=~OWhenascalarproductexistsonaspace,anormnaturallydoestoo:k~vk=q ~v;~v :(6:7)ThatthisisanormwillfollowfromtheCauchy-Schwartzinequality.Notallnormscomefromscalarproducts.ExamplesUsetheexamplesofsection 6.3 toseewhattheseare.Thenumbershererefertothenumbersofthatsection.1Anormistheusualpictureofthelengthofthelinesegment.Ascalarproductistheusualproductoflengthstimesthecosineoftheanglebetweenthevectors. ~u;~v =~u.~v=uvcos#:(6:8)4Anormcanbetakenastheleastupperboundofthemagnitudeofthefunction.Thisisdistinguishedfromthe\maximum"inthatthefunctionmaynotactuallyachieveamaximumvalue.Sinceitisboundedhowever,thereisanupperbound(manyinfact)andwetakethesmallestoftheseasthenorm.On�1x+1,thefunctionjtan�1xjhas=2foritsleastupperbound,thoughitneverequalsthatnumber.5Apossiblescalarproductis (a1;:::;an);(b1;:::;bn) =nXk=1a*kbk:(6:9)Thereareotherscalarproductsforthesamevectorspace,forexample (a1;:::;an);(b1;:::;bn) =nXk=1ka*kbk(6:10)Infactanyotherpositivefunctioncanappearasthecoecientinthesumanditstillde nesavalidscalarproduct.It'ssurprisinghowoftensomethinglikethishappensinrealsituations.Instudyingnormalmodesofoscillationthemassesofdi erentparticleswillappearascoecientsinanaturalscalarproduct.Iusedcomplexconjugationonthe rstfactorhere,butexample5referredtorealnumbersonly.Thereasonforleavingtheconjugationinplaceisthatwhenyoujumptoexample14youwanttoallowforcomplexnumbers,andit'sharmlesstoputitinfortherealcasebecauseinthatinstanceitleavesthenumberalone. 6|VectorSpaces10saleiswithin1000feetofaschool.Ifyouareanattorneydefendingsomeoneaccusedofthiscrime,whichofthenormsinEq.( 6.11 )wouldyouarguefor?Thelegislatorswhowrotethislawdidn'tknowlinearalgebra,sotheydidn'tspecifywhichnormtheyintended.Theprosecutingattorneyarguedfornorm#1,\asthecrow ies,"butthedefensearguedthat\crowsdon'tselldrugs"andhumansmovealongcitystreets,sonorm#2ismoreappropriate.TheNewYorkCourtofAppealsdecidedthatthePythagoreannorm(#1)istheappropriateoneandtheyrejectedtheuseofthepedestriannormthatthedefendantadvocated(#2). www.courts.state.ny.us/ctapps/decisions/nov05/162opn05.pdf 6.7BasesandScalarProductsWhenthereisascalarproduct,amostusefultypeofbasisistheorthonormalone,satisfying ~vi;~vj =ij=1ifi=j0ifi6=j(6:15)ThenotationijrepresentstheveryusefulKroneckerdeltasymbol.IntheexampleofEq.( 6.1 )thebasisvectorsareorthonormalwithrespecttothescalarproductinEq.( 6.9 ).Itisorthogonalwithrespecttotheotherscalarproductmentionedthere,butitisnotinthatcasenormalizedtomagnitudeone.Toseehowthechoiceofevenanorthonormalbasisdependsonthescalarproduct,tryadi erentscalarproductonthisspace.Takethespecialcaseoftwodimensions.Thevectorsarenowpairsofnumbers.Thinkofthevectorsas21matrixcolumnandusethe22matrix2112Takethescalarproductoftwovectorstobe (a1;a2);(b1;b2) =(a*1a*2)2112b1b2=2a*1b1+a*1b2+a*2b1+2a*2b2(6:16)Toshowthatthissatis esallthede nedrequirementsforascalarproducttakesasmallamountoflabor.Thevectorsthatyoumayexpecttobeorthogonal,(10)and(01),arenot.Inexample6,ifweletthedomainofthefunctionsbe�Lx+LandthescalarproductisasinEq.( 6.12 ),thenthesetoftrigonometricfunctionscanbeusedasabasis.sinnx Landcosmx Ln=1;2;3;:::andm=0;1;2;3;::::Thatafunctioncanbewrittenasaseriesf(x)=1X1ansinnx L+1X0bmcosmx L(6:17)onthedomain�Lx+LisjustanexampleofFourierseries,andthecomponentsoffinthisbasisareFouriercoecientsa1;:::;b0;:::.Anequallyvalidandmoresuccinctlystatedbasisisenix=L;n=0;1;2;:::Chapter5onFourierseriesshowsmanyotherchoicesofbases,allorthogonal,butnotnecessarilynormalized. 6|VectorSpaces14Exercises1Determineifthesearevectorspaceswiththeusualrulesforadditionandmultiplicationbyscalars.Ifnot,whichaxiom(s)dotheyviolate?(a)Quadraticpolynomialsoftheformax2+bx(b)Quadraticpolynomialsoftheformax2+bx+1(c)Quadraticpolynomialsax2+bx+cwitha+b+c=0(d)Quadraticpolynomialsax2+bx+cwitha+b+c=12Whatisthedimensionofthevectorspaceof(upto)5thdegreepolynomialshavingadoublerootatx=1?3Startingfromthreedimensionalvectors(thecommondirectedlinesegments)andasingle xedvector~B,isthesetofallvectors~vwith~v.~B=0avectorspace?Ifso,whatisit'sdimension?Isthesetofallvectors~vwith~v~B=0avectorspace?Ifso,whatisit'sdimension?4Thesetofalloddpolynomialswiththeexpectedrulesforadditionandmultiplicationbyscalars.Isitavectorspace?5Thesetofallpolynomialswherethefunction\addition"isde nedtobef3=f2+f1ifthenumberf3(x)=f1(�x)+f2(�x).Isitavectorspace?6Sameasthepreceding,butfor(a)evenpolynomials,(b)oddpolynomials7Thesetofdirectedlinesegmentsintheplanewiththenewruleforaddition:addthevectorsaccordingtotheusualrulethenrotatetheresultby10counterclockwise.Whichvectorspaceaxiomsareobeyedandwhichnot? 6|VectorSpaces16andusetheGram-Schmidtproceduretoconstructanorthonormalbasisstartingfrom~v0.Comparetheseresultstotheresultsofsection4.11.[Thesepolynomialsappearinthestudyofelectricpotentialsandinthestudyofangularmomentuminquantummechanics:Legendrepolynomials.]6.8Repeatthepreviousproblem,butuseadi erentscalarproduct: f;g =Z1�1dxe�x2f(x)*g(x)[Thesepolynomialsappearinthestudyoftheharmonicoscillatorinquantummechanicsandinthestudyofcertainwavesintheupperatmosphere.WithaconventionalnormalizationtheyarecalledHermitepolynomials.]6.9ConsiderthesetofallpolynomialsinxhavingdegreeN.Showthatthisisavectorspaceand nditsdimension.6.10ConsiderthesetofallpolynomialsinxhavingdegreeNandonlyevenpowers.Showthatthisisavectorspaceand nditsdimension.Whataboutoddpowersonly?6.11Whichofthesearevectorspaces?(a)allpolynomialsofdegree3(b)allpolynomialsofdegree3[Isthereadi erencebetween(a)and(b)?](c)allfunctionssuchthatf(1)=2f(2)(d)allfunctionssuchthatf(2)=f(1)+1(e)allfunctionssatisfyingf(x+2)=f(x)(f)allpositivefunctions(g)allpolynomialsofdegree4satisfyingR1�1dxxf(x)=0.(h)allpolynomialsofdegree4wherethecoecientofxiszero.[Isthereadi erencebetween(g)and(h)?]6.12(a)Forthecommonpictureofarrowsinthreedimensions,provethatthesubsetofvectors~vthatsatisfy~A.~v=0for xed~Aformsavectorspace.Sketchit.(b)Whatiftherequirementisthatboth~A.~v=0and~B.~v=0hold.Describethisandsketchit.6.13Ifanormisde nedintermsofascalarproduct,k~vk=q ~v;~v ,itsatis esthe\parallelogramidentity"(forrealscalars),k~u+~vk2+k~u�~vk2=2k~uk2+2k~vk2:(6:29)6.14Ifanormsatis estheparallelogramidentity,thenitcomesfromascalarproduct.Again,assumerealscalars.Considercombinationsofk~u+~vk2,k~u�~vk2andconstructwhatoughttobethescalarproduct.Youthenhavetoprovethefourpropertiesofthescalarproductasstatedatthestartofsection 6.6 .Numbersfourandthreeareeasy.Numberonerequiresthatyoukeeppluggingaway,usingtheparallelogramidentity(fourtimesbymycount).Numbertwoisdownrighttricky;leaveittotheend.Ifyoucanproveitforintegerandrationalvaluesoftheconstant ,consideritajobwelldone.Iusedinductionatonepointintheproof.The nalstep,extending toallrealvalues,requiressomeargumentsaboutlimits,andistypicallythesortofreasoningyouwillseeinanadvancedcalculusormathematicalanalysiscourse. 6|VectorSpaces18(b)Thenumber0timesanyvectoristhezerovector:0~v=~O.(c)Thevector~v0isunique.(d)(�1)~v=~v0.6.21Forthevectorspaceofpolynomials,arethetwofunctionsf1+x2;x+x3glinearlyindependent?6.22Findthedimensionofthespaceoffunctionsthatarelinearcombinationsoff1;sinx;cosx;sin2x;cos2x;sin4x;cos4x;sin2xcos2xg �2�101�101234�2�1012346.23Amodelvectorspaceisformedbydrawingequidistantparallellinesinaplaneandlabellingadjacentlinesbysuccessiveintegersfrom1to+1.De nemultiplicationbya(real)scalarsothatmultiplicationofthevectorby meansmultiplythedistancebetweenthelinesby1= .De neadditionoftwovectorsby ndingtheintersectionsofthelinesandconnectingoppositecornersoftheparallelogramstoformanothersetofparallellines.Theresultinglinesarelabelledasthesumofthetwointegersfromthe inter secting lines.(Therearetwochoiceshere,ifoneisaddition,whatistheother?)Showthatthisconstructionsatis esalltherequirementsforavectorspace.Justasadirectedlinesegmentisagoodwaytopicturevelocity,thisconstructionisagoodwaytopicturethegradientofafunction.Inthevectorspaceofdirectedlinesegments,youpinthevectorsdownsothattheyallstartfromasinglepoint.Here,youpinthemdownsothatthelineslabeled\zero"allpassthrougha xedpoint.DidIde nehowtomultiplybyanegativescalar?Ifnot,thenyoushould.Thispictureofvectorsisdevelopedextensivelyinthetext\Gravitation"byMisner,Wheeler,andThorne.6.24Inproblem 6.11 (g), ndabasisforthespace.Ans:1,x,3x�5x3.6.25Whatisthedimensionofthesetofpolynomialsofdegreelessthanorequalto10andwithatriplerootatx=1?6.26VerifythatEq.( 6.16 )doessatisfytherequirementsforascalarproduct.6.27Avariationonproblem 6.15 :f3=f1+f2means(a)f3(x)=Af1(x�a)+Bf2(x�b)for xeda,b,A,B.Forwhatvaluesoftheseconstantsisthisavectorspace?(b)Nowwhataboutf3(x)=f1(x3)+f2(x3)?6.28Determineifthesearevectorspaces:(1)Pairsofnumberswithadditionde nedas(x1;x2)+(y1;y2)=(x1+y2;x2+y1)andmultiplicationbyscalarsasc(x1;x2)=(cx1;cx2).(2)Likeexample2ofsection 6.3 ,butrestrictedtothosefsuchthatf(x)0.(realscalars)(3)Liketheprecedingline,butde neadditionas(f+g)(x)=f(x)g(x)and(cf)(x)=�f(x)c. 6|VectorSpaces20Nowpickupthesamef1androtateitby90clockwiseaboutthepositivex-axis,again nallyexpressingtheresultintermsofsphericalcoordinates.Callitf3.Ifnowyoutaketheoriginalf1androtateitaboutsomerandomaxisbysomerandomangle,showthattheresultingfunctionf4isalinearcombinationofthethreefunctionsf1,f2,andf3.I.e.,allthesepossiblerotatedfunctionsformathreedimensionalvectorspace.Again,calculationssuchasthesearemucheasiertodemonstrateinrectangularcoordinates.6.37Takethefunctionsf1,f2,andf3fromtheprecedingproblemandsketchtheshapeofthefunctionsre�rf1(;);re�rf2(;);re�rf3(;)Tosketchthese,picturethemasde ningsomesortofdensityinspace,ignoringthefactthattheyaresometimesnegative.Youcanjusttaketheabsolutevalueorthesquareinordertovisualizewheretheyarebigorsmall.Usedarkandlightshadingtopicturewherethefunctionsarebigandsmall.Startby ndingwheretheyhavethelargestandsmallestmagnitudes.Seeifyoucan ndsimilarpicturesinanintroductorychemistrytext.Alternately,checkout winter.group.shef.ac.uk/orbitron/ 6.38Usetheresultsofproblem 6.17 andapplyittotheLegendreequationEq.(4.55)todemonstratethattheLegendrepolynomialsobeyR1�1dxPn(x)Pm(x)=0ifn6=m.Note:thefunctionT(x)fromproblem 6.17 iszeroattheseendpoints.Thatdoesnotimplythattherearenoconditionsonthefunctionsy1andy2atthoseendpoints.TheproductofT(x)y01y2hastovanishthere.UsetheresultstatedjustafterEq.(4.59)toshowthatonlytheLegendrepolynomialsandnotthemoregeneralsolutionsofEq.(4.58)work.6.39UsingtheresultoftheprecedingproblemthattheLegendrepolynomialsareorthogonal,showthattheequation(4.62)(a)followsfromEq.(4.62)(e).Squarethatequation(e)andintegrateR1�1dx.Dotheintegralontheleftandthenexpandtheresultinanin niteseriesint.OntherightyouhaveintegralsofproductsofLegendrepolynomials,andonlythesquaredtermsarenon-zero.Equatelikepowersoftandyouwillhavetheresult.6.40UsethescalarproductofEq.( 6.16 )andconstructanorthogonalbasisusingtheGram-Schmidtprocessandstartingfrom10and01.Verifythatyouranswerworksinatleastonespecialcase.6.41Forthedi erentialequationx+x=0,pickasetofindependentsolutionstothedi erentialequation|anyonesyoulike.Usethescalarproduct f;g =R10dxf(x)*g(x)andapplytheGram-Schmidtmethodto ndanorthogonalbasisinthisspaceofsolutions.Isthereanotherscalarproductthatwouldmakethisanalysissimpler?Sketchtheorthogonalfunctionsthatyoufound.