PPT-An Introduction to Deep Transfer Learning
Author : tawny-fly | Published Date : 2018-12-15
Mohammadreza Ebrahimi Hsinchun Chen October 29 2018 1 Acknowledgment Some images and materials are from Dong Wang and Thomas Fang Zheng Tsinghua University
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "An Introduction to Deep Transfer Learnin..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
An Introduction to Deep Transfer Learning: Transcript
Mohammadreza Ebrahimi Hsinchun Chen October 29 2018 1 Acknowledgment Some images and materials are from Dong Wang and Thomas Fang Zheng Tsinghua University Chuanqi Tan Fuchun. Adam Coates. Stanford University. (Visiting Scholar: Indiana University, Bloomington). What do we want ML to do?. Given image, predict complex high-level patterns:. Object recognition. Detection. Segmentation. Quoc V. Le. Stanford University and Google. Purely supervised. Quoc V. . Le. Almost abandoned between 2000-2006. - . Overfitting. , slow, many local minima, gradient vanishing. In 2006, Hinton, et. al. proposed RBMs to . Information Processing & Artificial Intelligence. New-Generation Models & Methodology for Advancing . AI & SIP. Li Deng . Microsoft Research, Redmond, . USA. Tianjin University, July 4, 2013 (Day 3). to Speech . EE 225D - . Audio Signal Processing in Humans and Machines. Oriol Vinyals. UC Berkeley. This is my biased view about deep learning and, more generally, machine learning past and current research!. Aaron Crandall, 2015. What is Deep Learning?. Architectures with more mathematical . transformations from source to target. Sparse representations. Stacking based learning . approaches. Mor. e focus on handling unlabeled data. Carey . Nachenberg. Deep Learning for Dummies (Like me) – Carey . Nachenberg. (Like me). The Goal of this Talk?. Deep Learning for Dummies (Like me) – Carey . Nachenberg. 2. To provide you with . Continuous. Scoring in Practical Applications. Tuesday 6/28/2016. By Greg Makowski. Greg@Ligadata.com. www.Linkedin.com/in/GregMakowski. Community @. . http. ://. Kamanja.org. . . Try out. Future . CS 501:CS Seminar. Min Xian. Assistant Professor. Department of Computer Science. University of Idaho. Image from NVIDIA. Researchers:. Geoff Hinton. Yann . LeCun. Andrew Ng. Yoshua. . Bengio. …. Presenter : Jingyun Ning. “CVPR 2016 Best Paper Award”. Introduction. Deep Residual Networks (ResNets). A simple and clean framework of training “very” deep nets. State-of-the-art performance for. Aaron Crandall, 2015. What is Deep Learning?. Architectures with more mathematical . transformations from source to target. Sparse representations. Stacking based learning . approaches. Mor. e focus on handling unlabeled data. New-Generation Models & Methodology for Advancing . AI & SIP. Li Deng . Microsoft Research, Redmond, . USA. Tianjin University, July 2-5, 2013. (including joint work with colleagues at MSR, U of Toronto, etc.) . Secada combs | bus-550. AI Superpowers: china, silicon valley, and the new world order. Kai Fu Lee. Author of AI Superpowers. Currently Chairman and CEO of . Sinovation. Ventures and President of . Sinovation. John-William . Sidhom. , MD/PhD Candidate ’21. Department of Biomedical Engineering. Johns Hopkins University School of Medicine. Sidney Kimmel Comprehensive Cancer Center. Johns Hopkins University. Assistant Professor. Computer Science and Engineering Department. Indian Institute of Technology Kharagpur. http://cse.iitkgp.ac.in/~adas/. Biological Neural Network. Image courtesy: F. . A. . Makinde.
Download Document
Here is the link to download the presentation.
"An Introduction to Deep Transfer Learning"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents