PPT-Deep Learning for Vision

Author : briana-ranney | Published Date : 2015-09-20

Adam Coates Stanford University Visiting Scholar Indiana University Bloomington What do we want ML to do Given image predict complex highlevel patterns Object recognition

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Deep Learning for Vision" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Deep Learning for Vision: Transcript


Adam Coates Stanford University Visiting Scholar Indiana University Bloomington What do we want ML to do Given image predict complex highlevel patterns Object recognition Detection Segmentation. Quoc V. Le. Stanford University and Google. Purely supervised. Quoc V. . Le. Almost abandoned between 2000-2006. - . Overfitting. , slow, many local minima, gradient vanishing. In 2006, Hinton, et. al. proposed RBMs to . Presenter: . Yanming. . Guo. Adviser: Dr. Michael S. Lew. Deep learning. Human. Computer. 1:4. Human . v.s. . Computer. Deep learning. Human. Computer. 1:4. Human . v.s. . Computer. Deep Learning. Why better?. Continuous. Scoring in Practical Applications. Tuesday 6/28/2016. By Greg Makowski. Greg@Ligadata.com. www.Linkedin.com/in/GregMakowski. Community @. . http. ://. Kamanja.org. . . Try out. Future . CS 501:CS Seminar. Min Xian. Assistant Professor. Department of Computer Science. University of Idaho. Image from NVIDIA. Researchers:. Geoff Hinton. Yann . LeCun. Andrew Ng. Yoshua. . Bengio. …. Aaron Schumacher. Data Science DC. 2017-11-14. Aaron Schumacher. planspace.org has these slides. Plan. applications. : . what. t. heory. applications. : . how. onward. a. pplications: what. Backgammon. Presenter : Jingyun Ning. “CVPR 2016 Best Paper Award”. Introduction. Deep Residual Networks (ResNets). A simple and clean framework of training “very” deep nets. State-of-the-art performance for. Aaron Crandall, 2015. What is Deep Learning?. Architectures with more mathematical . transformations from source to target. Sparse representations. Stacking based learning . approaches. Mor. e focus on handling unlabeled data. New-Generation Models & Methodology for Advancing . AI & SIP. Li Deng . Microsoft Research, Redmond, . USA. Tianjin University, July 2-5, 2013. (including joint work with colleagues at MSR, U of Toronto, etc.) . Topic 3. 4/15/2014. Huy V. Nguyen. 1. outline. Deep learning overview. Deep v. shallow architectures. Representation learning. Breakthroughs. Learning principle: greedy layer-wise training. Tera. . scale: data, model, . . SYFTET. Göteborgs universitet ska skapa en modern, lättanvänd och . effektiv webbmiljö med fokus på användarnas förväntningar.. 1. ETT UNIVERSITET – EN GEMENSAM WEBB. Innehåll som är intressant för de prioriterade målgrupperna samlas på ett ställe till exempel:. Algorithms and Application s Xuyu Wang, Auburn University Abstract: With the rapid growth of mass data , how to intelligently proc ess these big data and extract valuable information from hug John-William . Sidhom. , MD/PhD Candidate ’21. Department of Biomedical Engineering. Johns Hopkins University School of Medicine. Sidney Kimmel Comprehensive Cancer Center. Johns Hopkins University. Eli Gutin. MIT 15.S60. (adapted from 2016 course by Iain Dunning). Goals today. Go over basics of neural nets. Introduce . TensorFlow. Introduce . Deep Learning. Look at key applications. Practice coding in Python. About the class. COMP 648: Computer Vision Seminar. Instructor: . Vicente. . Ordóñez. (Vicente . Ordóñez. Román). Website: . https://www.cs.rice.edu/~vo9/cv-seminar. Location: Zoom – Keck Hall 101.

Download Document

Here is the link to download the presentation.
"Deep Learning for Vision"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents