PPT-Introduction to Deep Learning

Author : jane-oiler | Published Date : 2017-04-05

Professor Qiang Yang Outline Introduction Supervised Learning Convolutional Neural Network Sequence Modelling RNN and its extensions Unsupervised Learning Autoencoder

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Introduction to Deep Learning" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Introduction to Deep Learning: Transcript


Professor Qiang Yang Outline Introduction Supervised Learning Convolutional Neural Network Sequence Modelling RNN and its extensions Unsupervised Learning Autoencoder Stacked Denoising . to Speech . EE 225D - . Audio Signal Processing in Humans and Machines. Oriol Vinyals. UC Berkeley. This is my biased view about deep learning and, more generally, machine learning past and current research!. Aaron Crandall, 2015. What is Deep Learning?. Architectures with more mathematical . transformations from source to target. Sparse representations. Stacking based learning . approaches. Mor. e focus on handling unlabeled data. Carey . Nachenberg. Deep Learning for Dummies (Like me) – Carey . Nachenberg. (Like me). The Goal of this Talk?. Deep Learning for Dummies (Like me) – Carey . Nachenberg. 2. To provide you with . Presenter: . Yanming. . Guo. Adviser: Dr. Michael S. Lew. Deep learning. Human. Computer. 1:4. Human . v.s. . Computer. Deep learning. Human. Computer. 1:4. Human . v.s. . Computer. Deep Learning. Why better?. Original Words by Samuel Trevor Francis (1834-1925). Music, chorus, and alternate words by Bob Kauflin.. © 2008 Integrity’s Praise! Music/Sovereign Grace Praise (BMI). Sovereign Grace Music, a division of Sovereign Grace Ministries.. CS 501:CS Seminar. Min Xian. Assistant Professor. Department of Computer Science. University of Idaho. Image from NVIDIA. Researchers:. Geoff Hinton. Yann . LeCun. Andrew Ng. Yoshua. . Bengio. …. Aaron Schumacher. Data Science DC. 2017-11-14. Aaron Schumacher. planspace.org has these slides. Plan. applications. : . what. t. heory. applications. : . how. onward. a. pplications: what. Backgammon. Presenter : Jingyun Ning. “CVPR 2016 Best Paper Award”. Introduction. Deep Residual Networks (ResNets). A simple and clean framework of training “very” deep nets. State-of-the-art performance for. Aaron Crandall, 2015. What is Deep Learning?. Architectures with more mathematical . transformations from source to target. Sparse representations. Stacking based learning . approaches. Mor. e focus on handling unlabeled data. New-Generation Models & Methodology for Advancing . AI & SIP. Li Deng . Microsoft Research, Redmond, . USA. Tianjin University, July 2-5, 2013. (including joint work with colleagues at MSR, U of Toronto, etc.) . Secada combs | bus-550. AI Superpowers: china, silicon valley, and the new world order. Kai Fu Lee. Author of AI Superpowers. Currently Chairman and CEO of . Sinovation. Ventures and President of . Sinovation. Topic 3. 4/15/2014. Huy V. Nguyen. 1. outline. Deep learning overview. Deep v. shallow architectures. Representation learning. Breakthroughs. Learning principle: greedy layer-wise training. Tera. . scale: data, model, . Ryota Tomioka (. ryoto@microsoft.com. ). MSR Summer School. 2 July 2018. Azure . iPython. Notebook. https://notebooks.azure.com/ryotat/libraries/DLTutorial. Agenda. This lecture covers. Introduction to machine learning. Usman Roshan. NJIT. Derivative free optimization. Pros:. Can handle any activation function (for example sign). Free from vanishing and exploding gradient problems. Cons:. May take longer than gradient search.

Download Document

Here is the link to download the presentation.
"Introduction to Deep Learning"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents