PDF-On Optimization Methods for Deep Learning Quoc V

Author : pamella-moone | Published Date : 2014-10-20

Le quoclecsstanfordedu Jiquan Ngiam jngiamcsstanfordedu Adam Coates acoatescsstanfordedu Abhik Lahiri alahiricsstanfordedu Bobby Prochnow prochnowcsstanfordedu Andrew

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "On Optimization Methods for Deep Learnin..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

On Optimization Methods for Deep Learning Quoc V: Transcript


Le quoclecsstanfordedu Jiquan Ngiam jngiamcsstanfordedu Adam Coates acoatescsstanfordedu Abhik Lahiri alahiricsstanfordedu Bobby Prochnow prochnowcsstanfordedu Andrew Y Ng angcsstanfordedu Computer Science Department Stanford. Goodfellow Quoc V Le Andrew M Saxe Honglak Lee And rew Y Ng Computer Science Department Stanford University Stanford CA 94305 ia3nquocleasaxehlleeang csstanfordedu Abstract For many pattern recognition tasks the ideal input feature would be in Quoc V. Le. Stanford University and Google. Purely supervised. Quoc V. . Le. Almost abandoned between 2000-2006. - . Overfitting. , slow, many local minima, gradient vanishing. In 2006, Hinton, et. al. proposed RBMs to . Information Processing & Artificial Intelligence. New-Generation Models & Methodology for Advancing . AI & SIP. Li Deng . Microsoft Research, Redmond, . USA. Tianjin University, July 4, 2013 (Day 3). Pritam. . Sukumar. & Daphne Tsatsoulis. CS 546: Machine Learning for Natural Language Processing. 1. What is Optimization?. Find the minimum or maximum of an objective function given a set of constraints:. Professor Qiang Yang. Outline. Introduction. Supervised Learning. Convolutional Neural Network. Sequence Modelling: RNN and its extensions. Unsupervised Learning. Autoencoder. Stacked . Denoising. . CS 501:CS Seminar. Min Xian. Assistant Professor. Department of Computer Science. University of Idaho. Image from NVIDIA. Researchers:. Geoff Hinton. Yann . LeCun. Andrew Ng. Yoshua. . Bengio. …. Aaron Schumacher. Data Science DC. 2017-11-14. Aaron Schumacher. planspace.org has these slides. Plan. applications. : . what. t. heory. applications. : . how. onward. a. pplications: what. Backgammon. Presenter : Jingyun Ning. “CVPR 2016 Best Paper Award”. Introduction. Deep Residual Networks (ResNets). A simple and clean framework of training “very” deep nets. State-of-the-art performance for. Secada combs | bus-550. AI Superpowers: china, silicon valley, and the new world order. Kai Fu Lee. Author of AI Superpowers. Currently Chairman and CEO of . Sinovation. Ventures and President of . Sinovation. . SYFTET. Göteborgs universitet ska skapa en modern, lättanvänd och . effektiv webbmiljö med fokus på användarnas förväntningar.. 1. ETT UNIVERSITET – EN GEMENSAM WEBB. Innehåll som är intressant för de prioriterade målgrupperna samlas på ett ställe till exempel:. John-William . Sidhom. , MD/PhD Candidate ’21. Department of Biomedical Engineering. Johns Hopkins University School of Medicine. Sidney Kimmel Comprehensive Cancer Center. Johns Hopkins University. Assistant Professor. Computer Science and Engineering Department. Indian Institute of Technology Kharagpur. http://cse.iitkgp.ac.in/~adas/. Biological Neural Network. Image courtesy: F. . A. . Makinde. Usman Roshan. NJIT. Derivative free optimization. Pros:. Can handle any activation function (for example sign). Free from vanishing and exploding gradient problems. Cons:. May take longer than gradient search. Michael Kantor. CEO and Founder . Promotion Optimization Institute (POI). First Name. Last Name. Company. Title. Denny. Belcastro. Kimberly-Clark. VP Industry Affairs. Pam. Brown. Del Monte. Director, IT Governance & PMO.

Download Document

Here is the link to download the presentation.
"On Optimization Methods for Deep Learning Quoc V"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents