/
Projective cameras Projective cameras

Projective cameras - PowerPoint Presentation

natalia-silvester
natalia-silvester . @natalia-silvester
Follow
401 views
Uploaded On 2016-06-23

Projective cameras - PPT Presentation

Trifocal tensors Euclideanprojective SFM Self calibration Line geometry Purely projective cameras Je ne suis pas la la semaine prochaine Quand peut on rattrapper le cours ID: 374124

line linear cameras trifocal linear line trifocal cameras congruences lines constraints note projective camera screws ponce amp bundles euclidean images tensor hyperbolic

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Projective cameras" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Projective cameras

Trifocal tensorsEuclidean/projective SFMSelf calibrationLine geometryPurely projective cameras

Je ne

suis

pas la la

semaine

prochaine

.

Quand

peut

-on

rattrapper

le

cours

?

Planches

:

http://www.di.ens.fr/~

ponce/geomvis/lect5.pptx

http://www.di.ens.fr/~ponce/geomvis/lect5.pdfSlide2

Trinocular Epipolar Constraints

These constraints are not independent!Slide3

Trifocal ConstraintsSlide4

Trifocal Constraints

All 3x3 minors

must be zero!

Calibrated CaseSlide5

Trifocal Constraints

All 3x3 minors

must be zero!

Calibrated Case

Trifocal TensorSlide6

Trifocal Constraints

All 3x3 minors

must be zero!

Calibrated Case

Trifocal TensorSlide7

Trifocal Constraints

All 3x3 minors

must be zero!

Calibrated Case

Trifocal TensorSlide8

Trifocal Constraints

Uncalibrated Case

Trifocal TensorSlide9

Trifocal Constraints: 3 Points

Pick any two lines

l

and

l

through

p

and

p

.

Do it again.

2

3

2

3

T(

p , p , p

)=0

1

2

3Slide10

Properties of the Trifocal Tensor

Estimating the Trifocal Tensor Ignore the non-linear constraints and use linear least-

squares a

posteriori.

Impose the constraints a posteriori.

For any matching

epipolar

lines,

l G l = 0.

The matrices G are singular. They satisfy 8 independent constraints in the

uncalibrated

case (

Faugeras

and

Mourrain

, 1995).

2

1

3

T

i

1

iSlide11

For

any matching epipolar lines, l G l = 0.

2

1

3

T

i

The backprojections of the two lines do not define a line!Slide12

Multiple Views (Faugeras and Mourrain, 1995)Slide13

Two Views

Epipolar ConstraintSlide14

Three Views

Trifocal ConstraintSlide15

Four Views

Quadrifocal Constraint

(Triggs, 1995)Slide16

The

Euclidean (perspective) Structure-from-Motion ProblemGiven m calibrated perspective images of n fixed points Pj we can write

Problem:

estimate the

m

3x4 matrices

Mi = [Ri t

i] andthe n positions Pj from the mn correspondences pij .

2mn equations in 11m

+3

n

unknowns

Overconstrained problem, that can be solved

using (non-linear) least squares!Slide17

The Euclidean Ambiguity of Euclidean SFM

If Ri, ti, and Pj are solutions,

So are

R

i

’,

t

i’, and Pj’, where

In fact, the absolute scale cannot be recovered since:When the intrinsic and extrinsic parameters are known

Euclidean ambiguity up to a similarity

transformation. Slide18

Euclidean

motion from E (Longuet-Higgins, 1981)Given F computed from n > 7 point correspondences, and its SVD F= UWVT, compute E=U diag(1,1,0) VT.

There are two solutions t’ = u

3

and t’’ = -t’ to

E

T

t=0.Define R’ = UWV

T and R” = UWTVT where(It is easy to check R’ and R” are rotations.) Then [

tx’]R’ = -E and [tx’]R” = E. Similar reasoning for t”.

Four solutions. Only two of them place the reconstructed

points in front of the cameras.Slide19

Euclidean reconstruction. Mean relative error: 3.1%Slide20

A different view of the fundamental matrix

Projective ambiguity ! M’Q=[Id 0] MQ=[A b]. Hence: zp = [A b] P and z’p’ = [Id 0] P, with P=(x,y,z,1)T. This can be rewritten as:

zp

= ( A [Id 0] + [0 b] ) P =

z’Ap

’ + b.

Or: z (b

× p) = z’ (b × Ap

’). Finally: pTFp’ = 0 with F = [bx] A.Slide21

Projective motion from the fundamental matrix

Given F computed from n > 7 point correspondences, compute b as the solution of FTb=0 with |b|2=1.Note that: [ax]

2

= aa

T

- |a|

2

Id for any a. Thus, if A0 = - [b

x] F, [bx] A0 = - [bx]

2 F = - bbTF + |b|2

F = F.

The general solution is M = [A b] with

A =

A

0

+ (

b |

 b |  b).Slide22

Two-view projective reconstruction. Mean relative error: 3.0%Slide23

Bundle adjustment

Use nonlinear least-squares to minimize:Slide24

Bundle adjustment. Mean relative error: 0.2%Slide25

From

uncalibrated to calibrated cameras

Weak-perspective camera:

Calibrated camera:

Problem: what is

Q

?

Note:

Absolute scale cannot be recovered. The

Euclidean shape

(defined up to an arbitrary similitude) is recovered.Slide26

Reconstruction Results (

Tomasi and Kanade, 1992)

Reprinted from “Factoring Image Sequences into Shape and Motion,” by C. Tomasi and

T. Kanade, Proc. IEEE Workshop on Visual Motion (1991).

1991 IEEE.Slide27

What is

some parameters are known? Self calibrationM= ρ K [ R t ]

Q= [C d] => M (CC ) M

=

ρ

KK

T

T

T

2

M

Ω

M

=

ρ

ω

with

Ω

= CC and

ω

= KK

T

T

T

*

*

*

*

If

u0=v0=0

, linear constraints on

Ω

(Triggs’97, Pollefeys’98)

*

2Slide28

x

c

ξ

r

y

c

Purely projective camerasSlide29

x

c

ξ

r

y

x

c

ξ

Line geometry! Slide30

x

y

=

x

Ç y = = = (u

; v)

y – x u

x

£

y v

The join of two points and

Plücker

coordinates

(Euclidean

version)

u

O

v

Note:

u . v

= 0Slide31

x

y

The join of two points and Plücker coordinates

(projective version)

u

O

v

Note:

u . v

= 0

=

x

Ç

y

=

u

v

[ ]Slide32

An inner product for lines

 = (u ; v) ! * = (v ; u) 

= (

s ; t

)

!

( |

) = * .  =

 . * = u . t + v . s

(

|

) = 0

Note:

(

|

)

= 2 u . v = 0Slide33

line

screw

P

5

the Klein quadric

Interpreting Pl

ű

cker

coordinatesSlide34

p

2Duality

x

p

1

p

3

x . p

k

= 0

x

*

= {

p | x . p

= 0 }Slide35

= p Æ q = ( p Ç q )*

The meet of two planes

p

q

Slide36

* = x* Æ y* = ( x Ç y )

*

Line duality

x

*

y

*

*

x

ySlide37

The joint of a line and a point

x

p

=

Ç x

p = [ Ç] x where [ Ç] =

[u

£

]

v

-v

T

0

When

is

 Ç x

equal to 0?Slide38

The meet of a line and a plane

p

x

=

Æ p

x = [Æ] p where [Æ] = [

 *Ç]

When if

Æ

p

equal to

0?Slide39

Coplanar lines

and

Line bundlesSlide40

»

= u1 »1 + u2 »

2

+

u

3

»3

Line bundlesc

x

x

3

x

1

x

2

xSlide41

»

= u1 »1 + u2 »

2

+

u

3

»3 y =

u1 y1 + u2

y2 + u3

y

3

y

2

c

r

x

y

y

1

x

3

x

1

x

2

x

y

3

Line bundlesSlide42

»

= X u , where X2R6£3, u2

R

3

y

=

Y u ,

where Y2R

4£3, u2R3

y

2

c

r

x

y

y

1

x

3

x

1

x

2

y

3

Line bundles

xSlide43

u

= Yzy y = Yzy [(c Ç

x

)

Æ

r

]

y

2

c

r

x

y

y

1

x

3

x

1

x

2

y

3

Line bundles

x

Note:Slide44

u

= Yzy y = Yzy [(c Ç

x

)

Æ

r

]

y

2

c

r

x

y

y

1

x

3

x

1

x

2

y

3

Line bundles

x

Note:

(

c

Ç

x

)

Æ

r =

[

c x – x c

]

r

T

TSlide45

u

= Yzy y = Yzy [(c Ç

x

)

Æ

r

] = P x when

z = c

y

2

c

r

x

y

y

1

x

3

x

1

x

2

y

3

Line bundles

xSlide46

c

r

x

y

x

y

¼

P x

m

¼

P

*

l

p

¼

P

T

m

¼ P T

y

Perspective projection

z

l

m

p

NOTE:

Here

u=y

X=P

TSlide47

The fundamental matrix revisited

1

|

»

2) = 0

y1T F y2 = 0

y11

2

1

¼

P

1

T

y

12 ¼ P2

T y2

y

2Slide48

1

1

1

2

2

2

3

3 

34

4 4

5 

5 5

6 6

6

The trifocaltensor

revisited

T (

y

1

,

y

2

,

y

3

) = 0Slide49

The trifocal tensor revisited

Di (»1 , »2

,

»

3

) = 0 or

Ti (u1 , u2 , u

3 ) = 0, for

i

=

1,2,3,4

1

1 1

2 

2 2

3

3

3

4 

4 

45

5

5

6

6 

6

δ

η

φ

x

(Ponce et al., CVPR’05)Slide50

c

r

x

y

x

y

¼

P x

m

¼

P

*

l

p

¼

P

T

m

¼ P T y

Perspective projection

z

l

m

p

NOTE:

Here

u=y

X=P

TSlide51

П

1

Chasles’ absolute conic:

x

1

2

+

x

2

2

+

x

3

2

= 0,

x

4

= 0.

The absolute quadratic complex:

T diag(Id,0) d = | u

|2 = 0.Slide52

e

pT = H ppTex = H-1

p

x

Coordinate changes --- Metric upgrades

Planes:

Points:

Lines:

e

 = p

x’

¼

P

(

H H

-1

)

x

H =

[

X y ]Slide53

Perspective projection

c

r

x

x

x

c

r

x

x

x

x

¼

P x

d

¼

P

*

d

p

¼

P

T

d

x

¼

P

T

x’

x

¼

P x

d

¼

P

*

d

p

¼

P

T

d

x

¼

P

T

The AQC general equation:

d

T

= 0, with

=

X

*T

X

*

Proposition:

T

¼

û

¢

û

Proposition :

P

P

T

¼

p

d

y

d

y

d

Proposition :

P

*

P

T

¼

*

Triggs (1997);

Pollefeys et al. (1998)

e

p

T

= H

p

p

T

e

x = H

-1

p

x

e

=

p

Slide54

Relation between

K, , and *Slide55

2480 points tracked in 196 images

Non-linear, 7 imagesNon-linear, 20 imagesNon-linear, 196 images

Linear, 20 imagesSlide56

Canon XL1 digital camcorder, 480

£720 pixel2 (Ponce & McHenry, 2004)

Projective structure from motion : Mahamud, Hebert, Omori & Ponce (2001)Slide57

What is a camera?

(Ponce, CVPR’09)

x

c

ξ

r

y

xSlide58

x

c

ξ

r

y

cSlide59

x

c

ξ

r

y

x

c

ξSlide60

x

c

ξ

r

y

x

c

ξ

ξSlide61

x

c

ξ

r

y

x

ξ

r

y

Linear

family

of lines

x

ξ

x

c

ξ

ξ

ξSlide62

Lines linearly dependent on 2 or 3 lines

(Veblen & Young, 1910)

Then go on recursively for general linear dependence

© H. Havlicek, VUTSlide63

What a camera is

Definition: A camera is a two-parameter linear family of lines – that is, a degenerate regulus, or a non-degenerate linear congruence.Slide64

Rank-3 families:

Reguli

Line fields

epipolar plane images

(Bolles, Baker, Marimont, 1987)

Line bundlesSlide65

Rank-4 (nondegenerate) families:

Linear congruencesFigures © H. Havlicek, VUTSlide66

x

ξ

y

r

x

y

r

ξ

Hyperbolic linear congruences

Crossed-slit cameras

(Zomet et al., 2003)

Linear pushbroom cameras

(Gupta & Hartley, 1997)Slide67

© E. Molzcan

© Leica

Hyperbolic linear congruencesSlide68

© T. Pajdla, CTU

Elliptic linear congruences

Linear oblique cameras (Pajdla, 2002)

Bilinear cameras (Yu & McMillan, 2004)

Stereo panoramas / cyclographs

(Seitz & Kim, 2002)Slide69

Parabolic linear congruences

Pencil cameras (Yu & McMillam, 2004)Axial cameras (Sturm, 2005)Slide70

Plücker coordinates and the Klein quadric

line

screw

the Klein quadric

=

x

Ç

y

=

u

v

[ ]

x

y

Note:

u . v

= 0

P

5Slide71

Pencils of screws and linear congruences

line

s

P

5

the Klein quadric

Reciprocal screws:

(s | t) = 0

Screw

linear complex:

s ≈ {

±

| ( s |

±

) = 0 } Slide72

line

s

P

5

the Klein quadric

t

l

Pencils of screws and linear congruences

Reciprocal screws:

(s | t) = 0

Screw

linear complex:

s ≈ {

±

| ( s |

±

) = 0 }

Pencil of screws:

l = {

¸

s +

¹

t ;

¸

,

¹

2

R

}The carrier of l

is alinear congruenceSlide73

P

5

e

h

p

Reciprocal screws:

(s | t) = 0

Screw

linear complex:

s ≈ {

±

| ( s |

±

) = 0 }

Pencil of screws:

l = {

¸

s +

¹

t ;

¸

,

¹

2

R

}

The carrier of

l

is a

linear congruence

Pencils of screws and linear congruencesSlide74

x

±

2

Hyperbolic linear congruences

»Slide75

x

»

1

p

1

±

1

±

2

p

2

Hyperbolic linear congruences

»

= (x

T

[ p

1

p

2

T

]x)

»

1

+ (x

T

[ p

1

p

2

T

]x)

»

2

+ (x

T

[ p

1

p

2

T

]x)

»

3

+ (x

T

[ p

1

p

2

T

]x)

»

4

»

2

»

3

»

4

»Slide76

x

»

1

p

1

±

1

±

2

p

2

Hyperbolic linear congruences

»

= (y

T

[ p

1

p

2

T

] y)

»

1

+ (y

T

[ p

1

q

2

T

] y)

»

2

+ (y

T

[ q

1

p

2

T

] y)

»

3

+ (y

T

[ q

1

q

2

T

] y)

»

4

y = u

1

y

1

+ u

2

y

2

+ u

3

y

3

= Y u

»

2

»

3

»

4

»

ySlide77

x

»

1

p

1

±

1

±

2

p

2

Hyperbolic linear congruences

»

=

(

u

T

[

¼

1

¼

2

T

]

u

)

»

1

+

(

u

T

[

¼

1

ρ

2

T

]

u

)

»

2

+

(

u

T

[

ρ

1

¼

2

T

]

u

)

»

3

+

(

u

T

[

ρ

1

ρ

2

T

]

u

)

»

4

= X û ,

where

X

2

R

6

£

4

and

û

2

R

4

»

2

»

3

»

4

»

ySlide78

x

ξ

±

a

2

p

1

z

p

2

p

a

1

Parabolic linear congruences

±

s

°

T

»

= X û ,

where

X

2

R

6

£

5

and

û

2

R

5Slide79

Elliptic linear congruences

x

»

y

»

= X û ,

where

X

2

R

6

£

4

and

û

2

R

4Slide80

x

»

1

y

1

»

2

y

2

Epipolar geometry

(

»

1

|

»

2

) = 0

or

û

1

T

F û

2

= 0,

where F = X1TX2 2

R4£4

Feldman et al. (2003): 6£

6 F for crossed-slit camerasGupta & Hartley (1997): 4£

4 F for linear pushbroom camerasSlide81

Trinocular geometry

Di (»1 , »2 , »3 ) = 0 or Ti

1

, û

2 , û3 ) = 0, for i = 1,2,3,4

1 1 12 

2 23

3

3

4

4 45 5 56 6 

6

δ

η

φ

xSlide82

Admissible maps and

intrinsic parameters(Batog, Goaoc, Ponce, CVPR’10)

Optics

Retina

x

y’

l

l’

y

l

Because light travels along straight lines in homogeneous media, the

lines associated with any camera must form a congruence of order 1

(Sturm, 1893;

Beni

ć

and

Gorjanc

, 2006).Slide83

Proposition:

Given two cameras with the same underlying congruence but distinct retinas, the image formed by the first camera is projectively equivalent to the image formed by the other one after some projective transformation of space.In plain English:

The retinal plane matters.Slide84

Retina

x

l

y

Ax

A x

2Slide85

Retina

x

l

y

Ax

A x

2

Proposition:

A necessary and sufficient condition for a 4x4 matrix

A to be admissible—that is, induce a linear camera, is that its

minimum polynomial has degree 2.

Proposition:

There is a

bijection

between admissible maps and linear

cameras.Slide86

Intrinsic parameters

Hyperbolic

Parabolic

EllipticSlide87

Building a parabolic camera

(Batog, Goaoc, Lavandier, Ponce, 2010)